Location

Jereld R. Nicholson Library

Date

5-17-2013 3:00 PM

End Date

5-17-2013 4:30 PM

Subject Area

Biology

Description

Proteins with an aggregated form rich in beta-sheet structure are known as amyloids, of which a subset are infectious. These infectious proteins are known as prions and cause diseases including bovine spongiform encephalopathy (“Mad Cow” disease). Several prions have been identified in the baker’s yeast, Saccharomyces cerevisiae. One of the most well-studied yeast prions is the protein Sup35. To understand the fine protein structure of Sup35 better, we used PCR-based mutagenesis to introduce a lysine residue (a charged amino acid) at five defined places in the protein sequence of Sup35. We describe our process for creating these mutant versions and the results of DNA sequencing of each mutant version. The next step will be to assess prion formation and stability of clones with the correct sequences. Understanding the behavior of yeast prions has proven helpful in understanding human amyloid diseases and further studies on these yeast prions, including Sup35, will expand our knowledge further.

Share

Import Event to Google Calendar

COinS
 
May 17th, 3:00 PM May 17th, 4:30 PM

Mapping the Beta-Sheet Structure of the Yeast Prion Sup35 through Creation of Targeted Mutant Forms

Jereld R. Nicholson Library

Proteins with an aggregated form rich in beta-sheet structure are known as amyloids, of which a subset are infectious. These infectious proteins are known as prions and cause diseases including bovine spongiform encephalopathy (“Mad Cow” disease). Several prions have been identified in the baker’s yeast, Saccharomyces cerevisiae. One of the most well-studied yeast prions is the protein Sup35. To understand the fine protein structure of Sup35 better, we used PCR-based mutagenesis to introduce a lysine residue (a charged amino acid) at five defined places in the protein sequence of Sup35. We describe our process for creating these mutant versions and the results of DNA sequencing of each mutant version. The next step will be to assess prion formation and stability of clones with the correct sequences. Understanding the behavior of yeast prions has proven helpful in understanding human amyloid diseases and further studies on these yeast prions, including Sup35, will expand our knowledge further.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.