Location

Jereld R. Nicholson Library

Subject Area

Chemistry

Description

Surface-enhanced Raman spectroscopy (SERS) is a spectroscopic technique which relies on the inelastic scattering of photons from a target molecule. SERS is both sensitive and specific; the technique produces a unique spectrum for all molecules while offering up to single molecule detection with proper conditions. However, acquisition of SERS spectra requires the presence of a suitable substrate, such as noble metal nanoparticles or roughened metal electrodes. Silica sol-gels are porous, amorphous silica matrices formed by the hydrolysis of a silicon containing precursor molecule. As a result of their unique structure, these compounds have a variety of unique properties, such as high surface area and low thermal conductivity. They can be easily modified, and metal-colloid-modified silica sol-gels represent a relatively unknown class of compounds which can function as substrates for SERS measurements. In this study, the fluorescent dye calcein blue (CB) was chosen as a target molecule due to its ability to interact with various metal ions. As a result, it has found use as an indicator in EDTA titrations and has potential applications in metal ion sensing devices. Thus, detection of calcein blue within modified sol-gels could lead to the development of new techniques for the detection of metal ions. Such techniques could have applications in fields such as water quality analysis or other environmental assays.

Share

Import Event to Google Calendar

COinS
 
May 15th, 12:15 PM May 15th, 1:30 AM

Metal Ion Detection Using Silica Sol-gels Containing Silver Nanoparticles and Calcein Blue (CB)

Jereld R. Nicholson Library

Surface-enhanced Raman spectroscopy (SERS) is a spectroscopic technique which relies on the inelastic scattering of photons from a target molecule. SERS is both sensitive and specific; the technique produces a unique spectrum for all molecules while offering up to single molecule detection with proper conditions. However, acquisition of SERS spectra requires the presence of a suitable substrate, such as noble metal nanoparticles or roughened metal electrodes. Silica sol-gels are porous, amorphous silica matrices formed by the hydrolysis of a silicon containing precursor molecule. As a result of their unique structure, these compounds have a variety of unique properties, such as high surface area and low thermal conductivity. They can be easily modified, and metal-colloid-modified silica sol-gels represent a relatively unknown class of compounds which can function as substrates for SERS measurements. In this study, the fluorescent dye calcein blue (CB) was chosen as a target molecule due to its ability to interact with various metal ions. As a result, it has found use as an indicator in EDTA titrations and has potential applications in metal ion sensing devices. Thus, detection of calcein blue within modified sol-gels could lead to the development of new techniques for the detection of metal ions. Such techniques could have applications in fields such as water quality analysis or other environmental assays.