Faculty Sponsor
Joelle Murray
Location
Jereld R. Nicholson Library
Date
5-11-2012 3:00 PM
End Date
5-11-2012 4:30 PM
Subject Area
Physics (general)
Description
Radiation therapy is becoming a popular method of cancer treatment due to its effectiveness and precision. Improvements in radiation therapy treatments rise from an increased understanding of the interactions between radiation and matter, where Compton scattering is the primary interaction. The main objective of this research project is to model Compton scattering using the program MATLAB to better understand the energetic and special distribution of scattering events. Monte Carlo Methods and the Klein Nishina formula were used to simulate the interactions within a material. It was found that a simulation with higher number of events more realistically reflects the probabilistic nature of this interaction and the range of possible scattering outcomes and shows the way in which energy would be deposited when a patient is irradiated with a large number of photons. The effect of the initial photon energy and cut-off interaction energy in the simulation are also explored. This work forms a foundation for future simulations, which would incorporate different types of interactions to simulate treatment.
Recommended Citation
Nicewonger, Daniel, "Computationally Modeling Compton Scattering to Understand Radiation Therapy" (2012). Science and Social Sciences. Event. Submission 29.
https://digitalcommons.linfield.edu/studsymp_sci/2012/all/29
Computationally Modeling Compton Scattering to Understand Radiation Therapy
Jereld R. Nicholson Library
Radiation therapy is becoming a popular method of cancer treatment due to its effectiveness and precision. Improvements in radiation therapy treatments rise from an increased understanding of the interactions between radiation and matter, where Compton scattering is the primary interaction. The main objective of this research project is to model Compton scattering using the program MATLAB to better understand the energetic and special distribution of scattering events. Monte Carlo Methods and the Klein Nishina formula were used to simulate the interactions within a material. It was found that a simulation with higher number of events more realistically reflects the probabilistic nature of this interaction and the range of possible scattering outcomes and shows the way in which energy would be deposited when a patient is irradiated with a large number of photons. The effect of the initial photon energy and cut-off interaction energy in the simulation are also explored. This work forms a foundation for future simulations, which would incorporate different types of interactions to simulate treatment.