Senior Theses

Off-campus Linfield users: To download Linfield Access theses, please use the following link to log into our proxy server with your CatNet ID and password.

Non-Linfield College users: Please talk to your local librarian about requesting this thesis through interlibrary loan.

Publication Date


Document Type

Thesis (Linfield Access)

Degree Name

Bachelor of Science in Physics



Faculty Advisor(s)

Michael S. Crosser (Thesis Advisor)
Joelle Murray & Luis Barajas (Committee Members)

Subject Categories

Energy Systems | Engineering Physics | Materials Science and Engineering | Physics | Power and Energy


Graphene is a single, atomic layer, hexagonal lattice with useful electrical properties. Discovered as a stable isolated sheet in the early 2000s, graphene field effect transistors (GFET) are an effective way to detect small changes in electrical activity. When an electrolytic fluid is placed on a GFET, a double layer capacitor can develop at the interface between the fluid and graphene. Surprisingly, this interface is sensitive to barometric pressure, making GFETs a viable device for measuring pressure changes. In this work we built a pressure vessel and placed GFETs inside to test the performance limits of graphene based on its environment.