Let $G = (V, E)$ be a simple graph with no isolated vertices, and let $n \in \mathbb{N}$. For each $v \in V$, let $N(v)$ be the set of edges at v. We define a labeling of G using elements of \mathbb{Z}_n, called a modular edge-sum labeling, in the following way:

- Assign a label from \mathbb{Z}_n to each edge $e \in E$, denoted $\omega(e)$.
- For all $v \in V$, define the label of v in the following manner:
 $$\ell(v) = \sum_{e \in N(v)} \omega(e),$$
 where the summation is computed modulo n.

A 1-relaxed edge-sum labeling of a graph G is for each labeled vertex $v \in V$, v has at most one neighbor vertex that has the same label. For any turn ℓ of the game, we define the label for G where this sum is computed modulo n.

Let $L = (V, E)$ be the set of labeled edges. For any turn ℓ, we have $\Lambda(v) = \sum_{e \in N(v)} \omega(e)$, and we require that the players maintain a legal 1-relaxed edge-sum labeling at each stage of the game.

Let G be a simple graph with no isolated vertices, and let $L \in \mathbb{Z}_n$ be a labeled vertex for which $\omega(e)$ is the label of e. We define a 1-relaxed edge-sum labeling in G.

References