Doping Density Measurements of Textured Solar Cells Using Capacitance-based Techniques

Jennifer T. Heath¹, Amanda Bowers², and Emily Van Doozer²

¹Department of Physics, Linfield College, McMinnville, OR 97128, United States

Introduction

• A solar cell is a diode. At its heart is a p-n junction, created by doped n-side with an electron donor (phosphorus), and p-side with an electron acceptor (boron).
• Doping creates a depletion region sandwiched between bulk materials where electric field causes current to flow.
• The depletion region – an insulating region surrounding the junction where mobile charge carriers (electrons and positive holes) are swept away.
• The doping densities are a fundamental property of the device, and are chosen to optimize the solar cell efficiency.
• Real solar cells are textured to increase the efficiency of the device.

Theory

• Depletion region, of width W, acts like the insulator in a capacitor: \(C = \epsilon A / W \).
• In this one-sided junction (\(N_d = N_x \)), W and C are dominated by the lower doped material.
• W, and therefore Capacitance, varies with applied DC bias.
• Capacitance, measured as a function of DC bias, yields the doping density: \(N_x = 2q\epsilon / \pi C \Delta V \).
• Technique theoretically yields an underestimate of the doping density, \(N_x \), for textured samples because of the added microscopic surface area, which is not easily measured.
• Initial purpose: Determine the way in which texturing affects the capacitance results.

Experiment

• Applied DC bias to change the depletion width from equilibrium state (Fig. 3)
• Used lock-in-amplifier, current-to-voltage preamplifier and DC power supply measure capacitance
• Non-destructive method
• SEM cross-section (Fig. 2) used to estimate the degree of surface texturing

Results

Doping Densities of p-bulk Region

• Doping densities varied from \(9 \times 10^{15} \text{ cm}^{-3} \) to \(2 \times 10^{16} \text{ cm}^{-3} \)
• Mean doping density \(\approx 1 \times 10^{16} \text{ cm}^{-3} \)
• Larger samples had larger doping densities

Conclusion

• Unexpected random scatter in distribution of doping densities may indicate a non-uniform spread in dopant throughout the bulk region of the p-side of the cell.
• Did not control experiment to measure a single crystal grain or determine the region of the wafer from which a sample was cut.
• Experiment assumed a uniformly doped wafer.
• Question regarding texturing effects on experimental results remains unanswered.

Future Work

• Create 3-D maps of doping density using ToF-SIMS to verify uniformity of doping and determine its spatial distribution.
• Re-measure devices with known uniform doping densities, to determine the real influence of surface texturing.
• Apply these results to understand the influence of texturing on other capacitance-based measurements of device properties.

Acknowledgements

The authors thank the Keck Foundation for their generous support. We would also like to thank all parties who put in effort toward the installation of solar cells on the roof of T.J. Day Hall.