Tilings of Annular Regions

Levi Altringer, Linfield College
Amanda Bright, Westminster College MO
Greg Clark, Westminster College PA
Charles Dunn, Linfield College
Kyle Evitts, Linfield College
Mike Hitchman, Linfield College
Brian Keating, UC San Diego
Brian Whetter, University of Puget Sound

Main Result

Theorem 1. \(A_2(a,b) \) is tileable by \(T \) if and only if
- \(n \) is even,
- \(n = 3 \) and \(a = b \) (mod 2), and it is not the case that \(a, b = 0 \) (mod 4),
- \(n \geq 5 \) is odd and \(a = b \) (mod 2).

The theorem above completely classifies which of our \(A_2(a,b) \) regions are tileable by \(T \). Below we present a proof of the first case when \(n \) is even. To do this we first develop a few definitions and lemmas.

Definition 1. An extended \(T, X_n \), is any rotation of a region formed by removing the two corner squares from first row of a \(2 \times n \) rectangle for all \(n \geq 3 \) (see Fig. 3).

Lemma 2. The region \(X_n \) is tileable by \(T \) for all odd \(n \geq 3 \).

Proof. We proceed by induction. For \(n = 3 \) we have a \(T \) tile. Now assume \(X_n \) is tileable by \(T \) for some odd \(n \geq 3 \). Now we must show that \(X_{n+2} \) is tileable by \(T \). Simply add a skew tetrominoe to one end of the region. The remaining area is tileable by the induction hypothesis.

Figure 3: An extended \(T \) of length \(n \)

Figure 4: Illustration of the induction step.

Figure 5: An arrangement of odd length extended \(T \)'s showing that the region is tileable \((a,b = 0 \mod 2)\).

From these lemmas, it is not difficult to show that \(A_2(a,b) \) is tileable by \(T \) for all even values of \(n \). This can be done by induction on \(n \). The previous lemma provides the base case.

Other Results

- We proved that the tile counting group for the \(A_2(a,b) \) regions with respect to \(T \) is isomorphic to \(\mathbb{Z} \times \mathbb{Z} \). This means that we know what all the tile invariants look like for these regions with our tile set.
- We were able to show that the extended \(T \)’s have a local move property.
- We also proved that there are \(2^{n-1} \) ways to tile \(A_2(a,b) \) by \(T \).

References

[4] C. Lester, Tiling with \(T \) and \(T \)-skew \(T \)-trominos, Querquet: Linfield Journal of Undergraduate Research, Vol. 1: Iss. 1, Article 3