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Abstract
Which dimensions of a and b satisfy tilings of modified rectangles M(a, b) by ribbon tile
pentominoes? We will answer this question using tile invariants developed in prior research
on the mathematics of tiling, as well as the use of inductive lemmas. The set of tiles we
use for this study are height-1 ribbon tile pentominoes, which we later define. Modified
rectangles are [a× b] rectangles with height a and width b, and the additional feature that
the top left and bottom right square tiles are removed.

1 Introduction to Tiling
The mathematics of tiling has been a deeply explored topic amongst mathematicians for several
years. In simplistic terms, one can think of tiling as tetris for mathematics. Rather than tiling
rows and columns in a video game, one is tiling a geometric region. When exploring tilings, we
first need two things-a family of regions to tile, and set of tiles to tile them with. For a region
to be tiled, the set of tiles must completely cover the region with no overlap or holes. We ask
ourselves whether or not a region can be tiled by a given set. If a region is tiled, we can prove
this by simply drawing the tiling of that region. If a region cannot be tiled, however, the proof
behind this is a much more deeply investigated question. Mathematicians Igor Pak and Michael
Hitchman discuss properties of both tiled and untiled regions, as well as introduce useful tools
we can use to prove the nonexistence of tilings.

Igor Pak proves that rectangles are tiled by the set of tiles below if and only if their area is divisible
by 10. We later prove a similar property using the same tile set with a different family of regions.

Figure 1, Rectangle

Figure 2, Tile Set

Figure 3, Tiled [4× 5] Rectangle
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Michael Hitchman proves which regions in Figure 4 are tiled by the set in Figure 5. We later
work with this same family of regions, and discuss Hitchman’s results and the parallels between
his approach to answering this question and ours.

Figure 4, A Modified rectangle

Figure 5, Tile Set

Figure 6, A Tiled Modified Rectangle

The key to Pak and Hitchman’s arguments is their use of tile invariants. Tile invariants are tools
that we can use to rule out regions that cannot tiled by a given set. We also use tile invariants
to answer the question: Which modified rectangles are tiled by height-1 ribbon tile pentominoes?
We define these and other necessary terms in the next section to answer our question.

2 Tile Invariants
Definition 1. A ribbon tile of area m is a polyomino (a region consisting of 2 or more squares
connected from edge to edge) consisting of m squares laid out in a path, such that from an initial
square, each step either goes up or to the right. A zero denotes a step to the right, and a 1
denotes a step up.

Definition 2. A height-0 ribbon tile is a ribbon tile whose binary code has a sum that is
congruent to 0 (mod 2). We denote these tiles Tn.

Example. Tile 1010 is a height-0 ribbon tile since its binary code has an even sum.

Figure 7

Definition 3. A height-1 ribbon tile is a ribbon tile whose binary code has a sum that is
congruent to 1 (mod 2). We denote these tiles T ′n.

Example. Tile 1101 is a height-1 ribbon tile since its binary code has an odd sum.

Figure 8
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Definition 4. Height-1 ribbon tile pentominoes, denoted T ′5, have area 5 and are defined as
the set {0001, 0010, 0100, 1000, 0111, 1011, 1101, 1110}.

Figure 9, T ′5

Definition 5. A modified rectangle is an [a× b] rectangle with the top left and bottom right
squares removed, denoted M(a, b).

M(a, b)

Figure 10

Now that we have defined our family of regions and set of tiles, we can define a tile invariant.

Definition 6. Let T = {t1, t2, ..., tn} have n tiles each with area m, and let R be a family of
regions. Suppose α is a tiling of a region R ∈ R. Let ai(α) equal the number of times tile ti
appears in the tiling α. Then a tile invariant is the sum:

k1 · a1(α) + k2 · a2(α) + ...+ kn · an(α) = c(R) (1)
where c(R) is constant.

In other words, a tile invariant is a constant of sum of tiles used in any tiling of a given region.
Invariants are extremely useful tools when proving the nonexistence of tilings. We define three
invariants below.

Definition 7. The area of a region R is denoted |R|. This value is equal to the total number
of square units in that region.

Definition 8. Suppose the area of each of the tiles in T = {t1, ..., tn} is m. Then for each region
R in R, if α is a tiling of R,

a1(α) + a2(α) + ...+ an(α) = |R|
m
. (2)

Example. We can use the area invariant to prove that M(3, 5) is not tiled by T ′5. Let
R = M(3, 5). Then |R| = 13. By our area invariant, in order for this region to be tiled, its area
must be divisible by the 5. 13 is not divisible by 5, therefore this region is not tiled. We later
use the area invariant to prove which M(a, b)s are tiled by T ′5.
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Definition 9. The Conway/Lagarias Invariant. In any tiling of a staircase region Sn by the
set T3, the number of t2 tiles used minus the number of t3 tiles used is constant.

Hitchman provides a useful example of this invariant in application with the staircase region S8:

t2 t3

Figure 11

S8

We can use our Conway/Lagarias invariant to show {t2, t3} does not tile S8. By our area
invariant, a2 + a3 = 12, and by our Conway/Lagarias invariant a2 − a3 = 3. There are no
integer solutions to this system, so {t2, t3} does not tile S8. The Conway/Lagarias invariant is
ultimately what inspired the discovery of other invariants used in tiling. One of these invariants
described below was discoverd by Pak, and provides a useful tool to prove the nonexistence of
tilings.

Definition 10. If R is a simply connected region tileable by Tn, then the total number of height-1
tiles used in any tiling of R is constant modulo 2. We call this the height invariant, denoted
h(R).

Hitchman proves the following useful test to show the nonexistence of tilings by using Pak’s
height invariant:

Lemma 1. Tileability test for T ′n. Suppose there exists a tiling of a simply connected region
R by Tn in which an odd number of height-0 tiles are used. Then the set T ′n of height-1 tiles
does not tile R.

Proof. Suppose Tn tiles R with a+b tiles where a counts the number of height-1 tiles and b counts
the number of height-0 tiles, and suppose b > 1 is odd. Then h(R) = a · 1 + b · 0 ≡ a (mod 2).
If T ′n tiles R then it does so with a + b tiles, in which case we would also have h(R) ≡a+b
(mod 2). But these two descriptions of h(R) would imply b ≡ 0 (mod 2), a contradiction since
b is odd. Thus, no tiling of R by height-1 tiles exists.

Example. Let us convince ourselves that our height invariant does indeed work when proving
the nonexistence of tilings. Consider the given tiling below.

Figure 12, M(3, 9)
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This region is tiled by three height-0 tiles and two height-1 tiles in T5. Then h(R) ≡ 0
(mod 2). If we assume that T ′5 also tiles this region, then it must do so with five tiles as well by
our area invariant. Then h(R) ≡ 1 (mod 2), a contradiction since h(R) is even in our first case
and odd in our second case. Thus T ′5 does not tile M(3, 9).

We use our tileability test to prove the nonexistence of tilings by T ′5.

3 Main Results
Theorem 1. The set T ′5 tiles M(a, b) if and only if ab ≡ 2 (mod 10).

Before we go through the proof of this theorem, we introduce the following useful lemmas.

Lemma 2. If M(a, b) is tiled by T ′5 then M(a+ 10, b) and M(a, b+ 10) are tiled by T ′5.

Proof. Suppose M(a, b) is tiled by T ′5. Consider M(a+ 10, b). M(a, b) is the top portion of this
figure. Let A be the bottom portion of M(a+ 10, b). We show that A is tiled for all b >1:

M(a, b)

A

b=2; M(11, 2) b=3

For all b ≥ 4, A can be partitioned into the following tiled regions:

Figure 13, [10× 2] Rectangle Figure 14, [10× 3] RectangleFigure 12, M(11, 2)

Therefore, for all even b ≥ 4 , A can be partitioned into one tiled region M(11, 2) and b−2
2

[10× 2] tiled rectangles. For all odd b ≥ 5, A can be partitioned into one tiled region M(11, 2),
b−5

2 [10× 2] tiled rectangles, and one [10× 3] tiled rectangle. Thus A is tiled by T ′5 for all b > 1
and M(a+ 10, b) is tiled by T ′5.
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Consider M(a, b+ 10). M(a, b) Is the left portion of this region. Let B be the right portion of
this region. We show that B is tiled for all a > 1:

M(a, b) B

a=2; M(2, 11) a=3

Notice that for all a ≥ 4, B can be partitioned into the following tiled regions:

FIgure 15, [2× 10] Figure 16, M(2, 11) Figure 17, [3× 10]

Therefore, for all even a ≥ 4, B can be partitioned into one tiled M(2, 11) and a−2
2 [2× 10]

tiled rectangles, and for all odd a ≥ 5, B can be partitioned into one tiled region M(2, 11), one
tiled [3× 10] rectangle, and a−5

2 tiled [2× 10] rectangles. Thus, B is tiled by T ′5 for all a > 1
and M(a, b+ 10) is tiled by T ′5.

Lemma 3. If an odd number of height-0 tiles in T5 tilesM(a, b) then an odd number of height-0
tiles in T5 tiles M(a+ 10, b) and M(a, b+ 10) also.

Proof. SupposeM(a, b) is tiled by an odd number of height-0 tiles in T5. ConsiderM(a+10, b).
M(a, b) is the top portion of this region. Let A be the bottom portion ofM(a+10, b). We show
A is tiled by an even number of height-0 tiles in T ′5 for all b > 1:

M(a, b)

A

By our proof of Lemma 2, A is tiled by zero height-0 tiles in T5 for all b>1. Therefore
M(a+ 10, b) is tiled by an odd number of height-0 tiles in T5.
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Consider M(a, b+ 10). M(a, b) Is the left portion of this region. Let B be the right portion of
M(a, b+ 10). We show B is tiled by an even number of height-0 tiles in T ′5 for all a >1:

M(a, b) B

By our proof of Lemma 2, B is tiled by zero height-0 tiles in T5 for all a>1. Therefore
M(a, b+ 10) is tiled by an odd number of height-0 tiles in T5.

Lemma 4. Symmetry Lemma.

1. The set T ′5 tiles M(a, b) if and only if T ′5 tiles M(b, a).

2. An odd number of height-0 tiles in T5 tilesM(a, b) if and only if an odd number of height-0
tiles in T5 also tiles M(b, a).

Proof. Suppose T ′5 tiles M(a, b). If we rotate M(a, b) 90 degrees clockwise and reflect it about
its right side, we have M(b, a):

M(a, b) →
rotation r1

→
reflection r2

M(b, a)

Notice that all tiles in T ′5 still remain in the simply connected region M(a, b) after applying both
the rotation clockwise 90 degrees and a reflection about their right side. Therefore T ′5 also tiles
M(b, a):

0001
→

r2 ◦ r1 0111 0100
→

r2 ◦ r11011 0010
→

r2 ◦ r1 1101 1000
→

r2 ◦ r1
1110

1011
→

r2 ◦ r1
0010 1101

→
r2 ◦ r1

0100 1110

→
r2 ◦ r1

1000 0111

→
r2 ◦ r1

0001

Suppose an odd number of height-0 tiles in T5 tiles M(a, b). We focus specifically on the two
height-0 tiles we use in our proof: {1111, 0000}. If we rotate M(a, b) and reflect it about its
right side, 1111 and 0000 still remain in M(b, a). Thus M(b, a) is tiled by an odd number of
height-0 tiles in T5.
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1111
→r2 ◦ r1

0000 0000
→r2 ◦ r1

1111

Now we use these Lemmas to prove our Tileability Theorem: The set T ′5 tiles M(a, b) if and
only if ab ≡ 2 (mod 10).

Proof. Suppose T ′5 tiles M(a, b). Observe possible values of a and b such that a, b > 1 below.

b
a 1 2 3 4 5 6 7 8 9 10 11

1
2
3 Wrong Area
4 Right Area
5
6
7
8
9

10
11

Figure 1: Base Case M(a, b)s

By our area invariant, the area of M(a, b) must be divisible by 5. Thus we can rule out all base
case regions with area not divisible by 5. Dimensions of modified rectangles with the right area
are shaded in green and regions with the wrong area are in red. Of our 16 possible regions, 12
of them are tiled. We show 6 of these tiled regions below, and by our Symmetry Lemma the
other 6 are also tiled:

M(2, 6) M(2, 11)

M(3, 4)
M(4, 8)
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M(6, 7)

M(8, 9)

For each of our tiled base cases, ab ≡ 2 (mod 10). We show below that of our last four base
cases with the right area, two of them are tiled by an odd number of height-0 tiles in T5. Thus
by Lemma 1 and our Symmetry Lemma, all four of these regions are not tiled:

M(3, 9)

M(7, 11)

For each of these untiled base cases, ab ≡ 7 (mod 10). Now that we have all of our base case
regions identified as either tiled or untiled, we can use our lemmas as an inductive step to
deduce all other possible regions. By Lemma 3, if ab ≡ 7 (mod 10), then M(a, b) is not tiled
by T ′5. By Lemma 2, M(a, b) is tiled if and only if ab ≡ 2 (mod 10) for all a, b > 1.

4 Connections & Contributions
Igor Pak determines which [a× b] rectangles are tiled by T ′5 below:
Theorem 2. Theorem 0.1. If an [a× b] rectangle can be tiled by height-1 ribbon tile
pentominoes, then 10|a · b

Our results contribute a satisfying equivalent property to Pak’s. That is, just as tiled [a× b]
rectangles have area divisible by 10, so do tiled modified rectangles using the set T ′5. As stated
in our Tileability Theorem for T ′5: T ′5 tiles M(a, b) if and only if ab ≡ 2 (mod 10). Thus
M(a, b) is tiled if and only if 10|ab− 2. Our results and Pak’s results also both depend on the
use of tile invariants to rule out untiled regions.
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Example. The [3× 10] rectangle in Figure 18 is tiled by T ′5 since its area is divisible by 10. All
rectangles with area not divisible by 5 can be ruled out by our area invariant. For example, the
[4× 6] rectangle in Figure 19 cannot be tiled.

Figure 18, [3× 10] Rectangle Figure 19, [4× 6] Rectangle

Example. The [7× 5] rectangle is tiled by 1 height-0 tile in T5. By our Tileability Test, this
region is not tiled by T ′5.

Figure 20, [7× 5] Rectangle

Also important to note, our inspiration and approach to this tiling problem parallels Hitchman’s.
Hitchman proves which modified rectangles are tiled by the set T ′4 (here he denotes this set of
height-1 tetrominos as S):

Theorem 3. Let a, b > 1. The set S tiles M(a, b) if and only if
1. a ≡ 2 (mod 4) and b is odd; or

2. a is odd and ab ≡ 2 (mod 8).

He uses area and height invariants to rule out untiled base-case M(a, b)’s, and also uses
inductive and symmetry lemmas to prove all tiled and untiled M(a, b)′s. Hitchman’s work also
builds off of Pak’s discovery of which [a× b] rectangles are tiled by the set T ′4.
Example. The region M(6, 3) is tiled by T ′4. We can use our area invariant to rule out all other
regions with area not divisible by 4. For example, M(2, 4) is not tiled.

Figure 21, M(6, 3) Figure 22, M(2, 4)

Example. Region M(7, 2) is tiled by 3 height-0 tiles in T4. By our Tileability Test, M(7, 2) is
not tiled by T ′4.

Figure 23, M(7, 2)
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5 Future Directions
This study incorporates historically developed tiling invariants to prove the nonexistence of
tilings. Its inclusion of the Conway/Lagarias and height invariants, as well as its contributions to
Pak’s research on the set T ′5, highlights the significance and beauty behind the re-occurring
patterns we see in the mathematics of tiling.

This work is not yet finished, however. Many future explorations could be done regarding tiled
regions by T ′5. One could study which squares and modified squares are tiled by height-1 ribbon
tile pentominoes. One could even shift their focus from the euclidean plane to tiling regions in
the hyperbolic plane. It would be fascinating to derive tile invariants in hyperbolic geometry.
Expanding this study beyond the bounds of the euclidean world would be an intriguing
endeavor, one that surely has been or soon will be explored.
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