Copper, ROS, and Mitochondrial Stress

Understanding the pathways that govern metabolic homeostasis

Matthew Walser

Dr. Megan Bestwick, Linfield Chemistry Department

Overview of Topics

- Biology of model system (S. cerevisiae)
- Chemistry of reactive oxygen species (ROS) in metabolic stress
- Copper's protective role against ROS produced in the mitochondria
- Future Directions
- Clinical Implications

Biology of Our Yeast Model

- Why yeast as a model organism?
 - Short life cycle
 - Grown in liquid cultures or on solid plates
 - Well established in literature
 - Many conserved gene homologs in humans

Environmental Stress Response (ESR)

Hallmarks of the ESR:

- Unfavorable environmental conditions are sensed
- Cell responds by altering expression of many general stress response genes (~900)

Common Stressors: temperature extremes, osmotic shock, DNA damage, oxidizing compounds (ROS), and nutrient restriction (Rapamycin)

Cell Response: cell cycle arrest, slowed growth, metabolic shift (fermentation \rightarrow respiration), and upregulation of defensive proteins (Sod1)

Reactive Oxygen Species as Mitochondrial Stressors

Common types of ROS:

- superoxide anion (O₂•-)
- hydrogen peroxide (H₂O₂)
- hydroxyl radical (HO*)

ROS react with nuclear DNA, mtDNA, proteins, and lipids creating mutations and dysfunctional machinery

Protective Role of Copper against ROS

• Original Goal: Investigate effect of copper treatment in mitochondrial oxidative damage

- Transition metal
- Utility as redox cofactor
- Main cellular use is in two key proteins involved in ROS homeostasis (CcO & Sod1)

Protective Role of Copper Against ROS

Curative Role: Redox cofactor for Sod1

• Sod1 neutralizes two reactive superoxide radicals to oxygen and hydrogen peroxide

Preventative Role: Redox cofactor for cytochrome c oxidase (CcO) complex

- CcO requires copper for overall function of electron transport chain (ETC) during respiration
- Transfers high energy electrons from the ETC to molecular oxygen at the terminal step

CLS Assay of Copper Treated Yeast

Goal: Investigate copper's effect on oxidative damage during yeast stationary phase lifespan

Growth Assays for Oxidative Stress

• Goal: Observe relative oxidative stress, based on growth, between varying levels of copper treatment in different metabolic environments

- Grow yeast on plates of varying conditions
 - Fermentable vs. nonfermentable carbon source
 - Copper treatment (CuSO₄) or chelation (BCS)
 - Treatment with Rapamycin (induces stress response & respiration)

Nonfermentable Growth Assay Treated with Cu²⁺ or BCS

Fermentable Growth Assay with Rapamycin Treatment (R)

Interpretation & Experimental Model

Results & Conclusions

CLS Assay:

• Lifespan extension of copper treated yeast in all strains and culture conditions

Growth Stress Assays:

- Significant growth stimulation in copper treated cultures induced to respire
- Growth attenuation in respiring cultures treated with BCS and lacking available copper

Copper likely defends against ROS damage by limiting O₂- production in ETC

Future Directions

 Image ROS production in live copper treated cultures via fluorescent dyes (Dihydroethidium)

 Analyze mRNA expression of Cox2 in response to copper supplementation via RT-qPCR

3) Analyze Cox2 protein expression in response to copper supplementation via quantitative Western blot

3)

Clinical Relevance

Acknowledgements

- Dr. Megan Bestwick, PhD
- The Linfield Chemistry and Biology Departments
- The Linfield College Student Faculty Collaborative Research Grant
- The National Science Foundation
- The Murdock College Research Program for Natural Sciences
- Kelly Schultz, Kelsey Bruce, Sarah Rempelos, Shae Reece

Questions?