Soil Respiration Methods

Worm Collection Methods

Goals of Study

Methods

Worm Collection Methods

Soil Respiration Methods

Introduction

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013). Studies have shown that invasive earthworms are correlated with reduced forest floor duff and lack of recruitment (Hale 2013). In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).

In the past few years, we have been analyzing soils in Forest Park and at control sites in the Mount Hood National Forest to elucidate causes for the dearth of seedlings and saplings in the urban forest. We found significantly deeper O horizons, higher levels of C, and a higher C/N ratio at control sites than at sites in Forest Park. One suggestion as to a cause of our soil findings was the presence of invasive earthworms at more urban sites. Studies have shown that invasive earthworms are correlated with reduced tree recruitment (Hale 2013).