Alloyed Nanoparticles with Lipid Coatings
Fatima Falcon Ontiveros, Dr. Brian D. Gilbert
Linfield College Department of Chemistry
McMinnville, Oregon 97128

Introduction
Monodisperse silver and gold alloy nanoparticles of controlled composition and size were synthesized for the development of a potential drug delivery system. The seeded growth of the alloy nanoparticles through a reduction of gold and silver salts, using the Turkевич approach, was used for synthesizing the nanoparticles. The size of the nanoparticles was characterized using a NanoSight LM10 HS and their composition with a UV-Vis spectrophotometer. These alloys and earlier gold nanoparticles of varying sizes were introduced to live wild-type S. cerevisiae cells in their exponential growth phase, and the absorbance of the cells after incubation with nanoparticles was measured with a UV-Vis spectrophotometer.

Materials and Methods
Gold Seed Synthesis
Following the Rioux et al. protocol, chloroauric acid (30 mM, 300 µL) and DI water (25 mL) were brought to ebullition through reflux. As the boiling started, sodium citrate (170 mM, 200 µL) was added to cap and stabilize the reduction of the gold ions. The solution turned very dark purple then ruby red indicating nucleation was taking place. The final volume of the solution (300 µM) was achieved by adding DI water (4.5 mL). Using a NanoSight particle sizer the mean diameter of the produced nanoparticles in the colloidal solution was determined to be 20 nm.

Au/Ag Alloy Nanoparticle Synthesis
For the composition-controlled seeded growth synthesis of the alloy nanoparticles, the seed suspension produced (30 µM, 5 mL) was refluxed until ebullition with DI water (90 mL). The composition of the outer shell depends on the amount of HAuCl₄ (30 mM) and AgNO₃ (50 mM) is added when the solution starts to boil. The amounts used were based on the literature mentioned before. Both are added at the same time and sodium citrate (170 mM, 900 µL) is added quickly after. The final solution is left to reflux for 30 more minutes for a complete reaction, and the final volume is adjusted with DI water (3.65 mL). The composition was characterized using a UV-vis spectrophotometer.

Gold Seeds Addition to Yeast Cells
The yeast strain used, BY4741, cultivated overnight in a continuous shaker and grown in YPD. The cell culture per trial used (170 mL) was added to cap and stabilize the reduction of the gold ions. The solution turned ruby red indicating nucleation was taking place. The final volume of the solution (300 µM) was achieved by adding DI water (4.5 mL). Using a NanoSight particle sizer the mean diameter of the produced nanoparticles in the colloidal solution was determined to be 20 nm.

Results
The absorption peaks of the nanoparticles changed depending on their composition. The alloys produced through the synthesis protocol by Rioux et al. showed this change in the absorption peaks in Figure 1. The λₘₐₓ ranged from 426 nm from the samples with 20% gold composition to 502 nm from the 80% gold composition sample. The reproduction of this protocol also allowed us to see the efficacy of alloys of different compositions as SERS probes. The alloys of a high composition of silver gave the best SERS image than the other alloys but were just as easy to make and did not show signs of aggregation after weeks of storage. In future research, this data will help select the best nanoparticles to introduce to yeast cells to make them easier to be located through SERS imaging. Even though the introduction of gold seeds to yeast cells did not yield the best results, future steps include adding antibodies to the nanoparticles that would attach to the surface of yeast cells or the breaking of the yeast cell wall using Lyticase.

Conclusions
Many thanks to the support from the Linfield College Chemistry, Biochemistry, and Biology faculty such as Dr. Thomas Reinert, Dr. Catherine Renke, and specially Dr. Megan Bestwick for all her guidance in all things yeasty. Final thanks to fellow peers during research like Matthew Walser, Luis Perez Morales, Kelsey Bruce and research partner, Ana Alfaro. Most importantly, thank you to the Linfield College Student-Faculty Collaborative Research Grant for the funding that made all this possible.

Acknowledgments

Further information
Please contact Dr. Brian Gilbert, Linfield College, at bgilber@linfield.edu for more information.

Literature Cited