BUILDING AND VALIDATING A MODEL FOR INVESTIGATING THE DYNAMICS OF ISOLATED WATER MOLECULES

EINTRODUCTION

- Dressel et. al have found a system in which single water molecules are isolated with only dipole-dipole interactions and expec to find evidence of ferroelectricity¹
- Computational models are desired fo proof-of-concept calculations and verifyin deduced understanding of this system
- Efficacy of three popular algorithm investigated

EMOTIVATION

- Models will increase understanding c fundamental interactions in many sciences
- Greatest potential impact is in biology
- Interpreting results of isolation is difficult because biological systems are too complex and have too much unknown uncertainty

EMETHODS

Consider a dipole at the origin with only rotational degree of freedom in presence of constant electric field (setup given in Fig. 1a)

```
for each algorithm
  for each electric field
    for each initial angle
       Model dynamics for total runtime
       Determine frequency of oscillation
    end
    Determine average frequency
  end
  Examine average frequency vs. e-field
  Fit to power function (Fig. 2a)
  Determine predictive stability coefficient \rho (Fig. 2b)
end
```

Grant Cates

Department of Physics, Linfield College, McMinnville, OR 97128

	₽ALGOR'
ch	Eulor Mothod (EM)
th ct	 First-point approximation Unstable for oscillatory
or ng	phenomena
ns	Euler-Aspel Method (EAM)
	 Last-point approximation Stable for oscillatory phenomena
of s	Beeman Method (BM)
t,	 Uses weighted average of information from previous two timesteps
o n	 Not self-starting
	EFIGU
ly a (a	$y = \alpha x^n$
	\vec{p}_B

purple region represents possible initial angles. (b) The The definition for the predictive stability coefficient. setup for The Future Works is given. Two dipoles are (Note: Here, $n_0 = \frac{1}{2}$) separated by a distance r and start with initial relative angle $\boldsymbol{\theta}_{r}$

(b)

FIG. 1 (a) The setup for The Methods is given. The FIG. 2 (a) The equation to which the data is fitted. (b)

D = |

n

n

TIHMS

$$v_n = v_{n-1} + a(x_{n-1}, t_{n-1})\tau$$

 $x_n = x_{n-1} + v_n\tau$

$$x_{n} = x_{n-1} + v_{n-1}\tau + \frac{\tau^{2}}{6} \left(4a(x_{n-1}, t_{n-1}) - a(x_{n-2}, t_{n-2}) \right)$$

$$v_n = v_{n-1} + \frac{\tau}{6} \Big(2a \Big(x_n, t_n \Big) + 5a \Big(x_{n-1}, t_{n-1} \Big) - a \Big(x_{n-2}, t_{n-2} \Big) \Big)$$

RES

FIG. 4 The results from fitting the data (to Fig. 2a) and determining the predictive stability coefficient (Fig. 2b) are summarized. The units for a are $(\sqrt{c_{/kg\cdot m}})$. Data and best-fits given in Fig. 3a.

Model	а		n		ρ	
	full	limited	full	limited	full	limited
EM	0.16 ± 0.65	4,500 ± 6,200	-0.01 ± 0.17	0.40 ± 0.07	1.02	0.20
EAM	54,000 ± 390	45,000 ± 7,700	0.51 ± 0.01	0.50 ± 0.01	0.02	0.01
BM	44,000 ± 320	38,000 ± 7,500	0.51 ± 0.01	0.50 ± 0.01	0.02	0.01

EFUTURE WORK

- (Fig. 3b)

EGRATITUDE

FIG. 3 (a) The results from probing the full range of efields (top; $E = 10^{-14}$ to 10^{-4} N/C) and the limited range (bottom; $E = 10^{-13}$ to 10^{-9} N/C) and (b) the preliminary results from The Future Work are shown.

EANALYSIS

• EAM and BM are superior in both ranges • Limited range in which EM is effective • EAM determined most effective, because it

also better predicts coefficient (a = 56,000)

• Determine ρ for more sophisticated algorithms • Investigate nearest-neighbor interactions (setup given in Fig. 1b)

• Further analyze Prelim. Results for two dipoles

• Look for evidence of ferroelectricity

• Drs. Michael Crosser, Jennifer Heath, Joelle Murray of Linfield College

• Prof. Dr. Martin Dressel of Stuttgart Universität

• Linfield Physics Mathematics and Departments

