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Simple Rules

Introduction x T * Lightening strikes random tree
| * * Fire spreads to nearest neighbors
The forest fire model has been used as an analogy to test the .« Left with clusters of trees still alive
theory of Self-Organized Criticality as a model of complexity.
The goal is to search for scale invariance in randomly generated au au zil;r:l 3. Small scale forest fire

forest fires using a computer simulation. In a previous model by

B. Drossel and F. Schwabl, power-law behavior was seen when Drossel-Schwabl Expanded

' ' ' ' * Dr I-Schwabl model spr h
the nearest neighbors to a tree on fire catch on fire, and it has Model N ossel-5¢ alg odel spread to the
been assumed that if further neighboring trees also catch on A A A AAA four nearest neighbors
fire, then it will still exhibit self-organized criticality, showing AAA AAA * Claimed that if it spread further we
scale invariance. Testing this assumption aids to the exploration AAA AAA would see scale invariance, supporting
of the applicability of self-organized criticality because the Figure 4. Representation of expanded parameters  the presence of SOC
model is the most useful when it applies to a large range of ethods
systems, as closely related to nature as possible. TR g B s o1 ISEECCHICITCIENERIESERISISNCIUSTE
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Self Organization: Larger system shows order due to small scale A W W e o R(s)
interactions, this order being scale invariance in the power law oS0 BB o 2o BB ) Qg oo TEB
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Critical State: The point in which a system is no longer in Figure 5. An example of a time-step in the forest fire simulation.
equilibrium. Results
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A . Phy.5|cal representation shows power—law behavior Figure 6. Number of clusters and cluster radius as a function of cluster size for the original model (Left) and
of the sandpile model. :
the expanded parameters (right).
=, 200sandgrains Power Law Behavior: Analvsis
- \\ coxso | * Relative change in one quantity shows a Y : :
B ~ | oroportional relative change in another e Power-law :c,tlll present with the expanded parameters
@ o - | + Smaller avalanches are more frequent e Scale Invariance was shown for R(s) because of the same slope, but not for N(s).
£ | than larger ones * In order to fully prove or disprove self organized criticality, both fires must be
© == (o) . . . .
z "W | : 1 tested at different lattice sizes.
5] " * Power-law equation: s = —
I Future Work
Avalanche frequency  « isthe slope on a log-log scale

e Test different lattice sizes

1000 sand-grains
 Expand different parameters such as lightning frequency and forest density

Scale Invariance:

§ : + When changing the lattice size, the * Refine counting algorithm in code
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