Results:

88% of the beetles collected during the field season were *Omus audouini* with the remaining 12% made up of three other genera. Overall abundance of beetles remained fairly similar throughout the field season with more variation in the control plots. Abundance of beetles in the treatment and control plots were not different for the season.

Results:

Due to highly non-normal distribution of the data, we converted numerical abundances to rank abundances. As time progressed, the overall abundance of ants in the control and treatment plots increased (Fig 3). For the four most common ant genera, we found different numbers of ants in control plots compared to the treatment plots (Fig 4).

Figure 1: Pitfall placement within experimental plots

Figure 2: Percentage of ants of differing genera collected over the 2015 field season.

Figure 3: Overall rank abundance of ants in control and treatment plots over time.

Figure 4: Rank abundance of four most common ant genera through time in control and treatment plots.

Figure 5: Overall rank abundance of beetles in the control and treatment plots over time.

Conclusions:

- A change in plant community did affect the abundance of one important consumer – ants.
- The herbicide treatment did not affect relative diversity of the ant genera.

Future work:

- Complete statistical analysis of the Taxa x Treatment x Time abundance data.
- Continue field work for the duration of this five year study.
- Examine population abundances of other arthropod predators.