I. Research Objective
Speculating about which pitcher will win the Cy Young Award has long been a pastime of baseball fans. In this paper, we identify which metrics affect a pitcher’s chances of winning the Cy Young Award, and the marginal effect of each metric. Our results were found using an ordinary least squares regression with a data set containing all pitchers in the American League who received at least one vote for the Cy Young award between 1970 - 2009. Our results show that voters favor pitchers with a high number of wins and a strong strikeout rate. Starting pitchers are also heavily favored over relievers.

II. Empirical Model and Variables

Log(Vote) = \beta_0 + \beta_1(Wins) + \beta_2(Losses) + \beta_3(Saves) + \beta_4(IP) + \beta_5(ERA) + \beta_6(K/IP) + \beta_7(BBB) + \beta_8(HRIP) + \beta_9(Starter) + \epsilon

Wins, num of wins earned by the pitcher in that given season.
Losses, num of losses attributed to the pitcher in that given season.
Saves, num of saves earned by the pitcher in that given season.
IP, num of innings pitched by the pitcher in that given season.
ERA, num of runs given up per nine innings pitched by the pitcher in that given season.
K/IP, num of strikeouts earned by the pitcher in that given season multiplied by the number of innings that they pitched.
BB/IP, num of walks issued by the pitcher in that given season multiplied by the number of innings that they pitched.
HRIP, num of home runs given up by the pitcher in that given season multiplied by the number of innings that they pitched.
Starter, dummy variable for whether the pitcher was a starter or reliever.

III. Hypotheses

Wins is hypothesized to have a positive effect on Log(Vote), pitchers with more wins are seen as superior and should receive more votes.
Losses is hypothesized to have a negative effect on Log(Vote), pitchers with a high number of losses are rarely noticed and are less likely to receive votes.
Saves is hypothesized to have a positive effect on Log(Vote), saves mean a pitcher has earned a win for his team. Pitchers with a high number of saves should receive more votes.
IP is hypothesized to have a positive effect on Log(Vote), pitchers with more innings pitched are more likely to be voted on than those with fewer innings pitched.
ERA is hypothesized to have a negative effect on Log(Vote), a higher ERA means a pitcher allows more runs and should receive fewer votes.
K/IP is hypothesized to have a positive effect on Log(Vote), higher strikeout rates makes it harder for other teams to score and should increase the number of votes the pitcher receives.
BB/IP is hypothesized to have a negative effect on Log(Vote), walking a batter gives the opposing team more chances to score, and should decrease the number of votes the pitcher receives.
HRIP is hypothesized to have a negative effect on Log(Vote), pitchers who allow more home runs will have more runs scored against them which should decrease the number of votes received.
Starter is hypothesized to have a positive relationship with Log(Vote), starting pitchers are more recognized than relievers and are expected to receive more votes.

IV. Data
Cross-sectional data set containing all pitchers in the American League that received a vote for the Cy Young Award between 1970 and 2009.

Data Sources:
- Most player data came from Fangraphs.com
- Data on Cy Young votes came from BaseballReference.com

Data Challenges:
- Identifying pitchers as starters or relievers
 - Neither of the data sources indicated whether a pitcher was a starter or reliever
 - Pitchers were identified as starters or relievers based on their games played, games started, and saves

V. Empirical Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.563589</td>
<td>0.093448</td>
<td>-5.803413</td>
<td>0.0000</td>
</tr>
<tr>
<td>Wins</td>
<td>0.241273</td>
<td>0.032376</td>
<td>7.452339</td>
<td>0.0000</td>
</tr>
<tr>
<td>Losses</td>
<td>-0.174088</td>
<td>0.033956</td>
<td>-5.124476</td>
<td>0.0000</td>
</tr>
<tr>
<td>Saves</td>
<td>0.077596</td>
<td>0.012775</td>
<td>6.085399</td>
<td>0.0000</td>
</tr>
<tr>
<td>IP</td>
<td>0.000507</td>
<td>0.000419</td>
<td>1.472905</td>
<td>0.1419</td>
</tr>
<tr>
<td>ERA</td>
<td>-0.512121</td>
<td>0.173624</td>
<td>-2.944361</td>
<td>0.0035</td>
</tr>
<tr>
<td>K/IP</td>
<td>-0.823940</td>
<td>0.644622</td>
<td>-1.278175</td>
<td>0.2022</td>
</tr>
<tr>
<td>BB/IP</td>
<td>-0.106582</td>
<td>0.238941</td>
<td>-0.431453</td>
<td>0.6706</td>
</tr>
<tr>
<td>HRIP</td>
<td>2.844383</td>
<td>5.272200</td>
<td>0.539506</td>
<td>0.5900</td>
</tr>
<tr>
<td>Starter</td>
<td>-0.187791</td>
<td>0.943106</td>
<td>-0.199120</td>
<td>0.8423</td>
</tr>
<tr>
<td>Starter*K/IP</td>
<td>2.371625</td>
<td>0.721260</td>
<td>3.288167</td>
<td>0.0011</td>
</tr>
<tr>
<td>Starter*BB/IP</td>
<td>-0.738368</td>
<td>1.181779</td>
<td>-0.604190</td>
<td>0.5090</td>
</tr>
<tr>
<td>Starter*HRIP</td>
<td>-7.547453</td>
<td>5.686096</td>
<td>-1.286184</td>
<td>0.1994</td>
</tr>
</tbody>
</table>

R-squared: 0.435479

VI. Conclusions
- Our adjusted R-squared indicates that 43% of the variation in percentage of the votes received is explained by our model.
- Wins are statistically significant in explaining the percentage of Cy Young votes received.
- Losses are statistically significant in explaining the percentage of Cy Young votes received.
- Saves are statistically significant in explaining the percentage of Cy Young votes received.
- ERA is statistically significant in explaining the percentage of Cy Young votes received.
- Starter*K/IP is statistically significant in explaining the percentage of Cy Young votes received.
- Our results were used to create a predictive model for the Cy Young Award which correctly predicted 64% of the winners over the years in our data set. 88% of the time our model was able to place the winner in one of the top two vote getters for that given year.