Kinematic Differences Between Land and Shallow-Water Sprinting

L.A. Huth, E.M. Schmidt, G.L. Killgore

Department of Health, Human Performance, and Athletics
Linfield College

Background

Previous studies have demonstrated that deep water running can be used as an alternative or supplemental exercise to a training program (1). While dramatically decreasing the impact forces that individuals experience on land, this aquatic running style mimics the movement pattern of running that is found on land (1). Additionally, aquatic running has been shown to produce beneficial physiological effects that are comparable to land-based running (2).

Although numerous studies have been completed on the physiology and biomechanics of deep water running, there is a paucity of studies that focus on shallow water sprinting. Thus, the purpose of our study was to compare lower extremity running kinematics of female college athletes in a shallow water sprinting environment and in a land-based sprinting environment.

Materials & Methods

This study was approved through the Linfield College IRB prior to data collection. All participants completed health history paperwork and signed an informed consent. All participants wore a jog bra, spandex, as well as aquatic training shoes for traction during aquatic trials and exercise clothes e.g. shorts & t-shirt for land trials. Participants were selected based on gender, sport, and running technique. In doing so, this study consisted of 13 female NCAA IIII athletes whom participated in either soccer or track and field. The mean age among the participants was 19.20 years (±9.94), the mean height was 163.97 cm (±5.99), the mean weight was 60.75 kg (±5.8%), and the mean body fat percentage was 22.33% (±5.45).

Familiarization

Spectroscopically people adopt a drive style, which looks similar to high knees on land. Although this style feels like land sprinting, it does not adequately mimic what we do on land. Thus, a familiarization session on proper water sprinting form was necessary prior to data collection. Each participant was required to complete a shallow water familiarization session. This session covered proper sprinting technique in chest deep water.

In order to mimic sprinting on land as closely as possible we suggest that hip flexion 90° perpendicular to trunk, knee flexion 90°, knee extension 180°, and hip extension 180° prior to ground contact with foot. By performing shallow water sprinting with this technique, individuals can adequately mimic the movement pattern of sprinting on land while in an aquatic environment.

Data Collection

All trials in both mediums were recorded from the right sagittal view. One representative stride was then taken from each participant in both water and on land. The means were then compared between land vs water in SPSS statistical 21 (repeated T tests) relative to stride rate (SR), stride length (SL), speed, hip to foot ratio, single leg support time (SLS), and single leg swing time (SW). An alpha level of p = 0.05 was used.

Purpose

This PowerPoint 2007 template produces a 36"x48" poster and save valuable time placing titles, subtitles, text, graphs / charts, and tables. The template will automatically adjust the size of your images by enlarging them disproportionally. You can add images by dragging and dropping from your desktop, copy low quality when printed. Zoom it at 100% to see what the logo will going to INSERT > PICTURES. Logos taken from web sites are likely to be provided boxes. The template will automatically adjust the size of your copy if you are ready to print your poster, go online to through the poster design process and answer your poster copy (—THIS SIDEBAR DOES NOT PRINT—)

PosterPresentations.com

Summary and Conclusion

The aquatic-based sprinting style was found to have significant lower extremity kinematic differences when compared to the land-based sprinting style. This applied to all of the kinematic variables that were measured with the exception of single leg support time and single leg swing time. This study illustrates the differences that may be exhibited while using shallow water sprinting for injury prevention, rehabilitation, as well as sport specific training. However, these differences are due to fluid mechanics, e.g. drag, buoyancy, and hydrostatic pressure. Although the benefits of shallow water running or not clearly understood, the data presented suggests the need for future research to further the knowledge and understanding of this form of exercise.

Selected References


More references are available upon request.

Acknowledgments

We would like to thank the following people for making this research project possible:

Dr. Sarah Coze, Participants, & Linfield College

Contact Information

Laurel Huth
Exercise Science
Linfield College
shuth@linfield.edu

Exercise Science Chair and Professor of Human Performance Linfield College
Department of Health, Human Performance, and Athletics
Linfield College Office: 503-883-2410
killgore@linfield.edu