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Abstract

When operating graphene field effect transistors (GFETs) in fluid, a double layer capacitance

(Cdl) is formed at the surface. In the literature, the Cdl is estimated using values obtained

using metal electrode experiments. Due to the distinctive electronic and surface properties of

graphene, there is reason to believe these estimates are inadequate. This work seeks to directly

characterize the double layer capacitance of a GFET. A unique method for determining the

Cdl have been implemented, and data has been obtained for three electrolytes and one ionic

fluid. The results yield dramatically lower Cdl values than those obtained with metal electrode

experiments, and also demonstrate significant asymmetry between electron and hole doped

behavior in these ambipolar devices.
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Chapter 1

Introduction

Graphene is a material whose atomic structure is comprised of a single layer of carbon atoms

connected in a hexagonal lattice, as illustrated in Figure 1.1. This 2-dimensional sheet of carbon

is an exciting and relatively new discovery; having been only theoretically analyzed for decades

Figure 1.1: Schematic of the atomic structure of
graphene.

until the early 2000s[1]. The excitement cen-

tered on this recent material discovery in-

volves the unique electronic and structural

properties of graphene[2], making the material

an interesting and varied subject of study. For

instance, carbon is a chemically non-reactive

element making it an attractive choice for

a variety of sensors; not only does its non-

reactivity warrant interest in it as a sensor but also the ability for graphene to change resistance

in the presence of small external voltages. This is especially important for biological sensors

which would be used in aqueous environments with very small charged molecules in the solution

1



Chapter 1 Introduction 2

needing to be detected. Graphene is ideal for these small detections due to its higher sensitivity

to external electric field than bulk (not 2-dimensional) conducting materials.

Graphene and bulk conductors respond differently to external voltages. For a conducting

metal, the presence of an external voltage does not change the charge density of the metal

significantly; this response is shown in Figure 1.2. The free electrons that are able to conduct

charge through the bulk material remain more or less unaffected when a charge is placed nearby.

Figure 1.2: Illustration of charges passing through a
bulk metal conductor with and without the presence of
an external electric field. Current is applied to the leads
(in gold) and the minimal difference in current flow is

highlighted.

The charge affects only approximately

the first atomic layer of free electrons

which when compared to the immense

number of charges in the material have

little to no effect on the overall charge

density. However, graphene is a single

atomic layer so any free charge carriers

in the sheet are affected much more than

for a bulk conductor; this effect is illus-

trated in Figure 1.3. This suggests that

any charges present in the graphene sheet

can be manipulated by an external volt-

age.

Something especially exciting about

graphene, is it’s ambipolar property; the ability to have either majority electron charge carriers

or majority hole charge carriers. This property depends on the applied external electric field.

For example, if a large negative voltage is applied then a large amount of holes will be drawn

into the graphene sheet and similarly, if a large positive voltage is applied then a large amount
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of electrons will be drawn into the graphene sheet. Finally, when no voltage is applied then no

charge carriers are present; this point is called the Dirac point, and the resistance of the sheet

is highest when the Dirac point is reached.

This suggests that the number of charge carriers in the graphene sheet is proportional to

the strength of the external electric field. This makes graphene a very durable and local sensor,

Figure 1.3: Illustration of charges passing through a sheet
of graphene with and without the presence of an external elec-
tric field. Current is applied to the leads (in gold) and the

significant difference in current flow is highlighted.

enabling it to pick up changes in

voltage at very small scales; one

study was able to sense the heart-

beat of a single heart cell[3]. Due

to the small size of graphene sheets

they can also be used at a very lo-

calized area; targeting and measur-

ing the electrical signal of a single

neuron. These initial results already

suggest that graphene probes are a promising avenue of research as an alternative to usual metal

probes. It also means that understanding and characterizing the electrolyte-graphene interface

is critical to furthering the field of 2-dimensional material research.



Chapter 2

Experimental Setup

A typical graphene field effect transistor (GFET) chip is pictures in Figure 2.1. Chips of this kind

allow for the electronic properties of the graphene to be measured using a variety of equipments

Figure 2.1: Picture of a chip with 8 GFETs. One such GFET
is shown zoomed in on the upper right-hand corner.

and techniques. These GFETs were

fabricated using a combination of

chemical vapor deposition (CVD)

grown graphene transferred to Si

wafers, photolithography to shape

the graphene, and metal evapora-

tion to deposit metal leads on the

GFET chip. The details of device

fabrication and electronic measure-

ments are described below.

4



Chapter 2 Experimental Setup 5

2.1 Device fabrication

CVD grown graphene was procured through ACS material, LLC: https://www.acsmaterial.com/.

The graphene is grown on a copper sheet as seen in Figure 2.2[4]. A layer of polymer (PMMA)

is spin-coated onto the copper-graphene sheet, the copper is then etched away with a copper

Figure 2.2: CVD graphene grown on copper
sheeting in preparation for transfer to SiO2.

etchant purchased from Sigma Aldrich leaving only

a sheet of PMMA adhered to mono-layer graphene.

This sheet (graphene side down) is then transferred

to a Si wafer with a 300nm layer of SiO2 grown on

top. The layer of SiO2 enables the visual confir-

mation of mono-layer graphene after transfer. The

deep purple color changes more dramatically when

a thin layer of material is transferred to its surface

then the lighter blue color of Si alone. After the

sheet of PMMA-graphene is dried the polymer is

removed with an Acetone bath warmed on a hot plate at 60 ◦C. This bath is allowed to sit

for approximately 3 hours before the Si-SiO2-graphene chip is placed into a room temperature

bath of isopropyl alcohol again for approximately 3 hours. From this bath the chip is placed

in deionized water nd allowed to soak once this is complete the chip is carefully N2 dried and

ready for the photolithographic step.

The graphene on the Si-SiO2 is shaped into specific transistor geometries using pho-

tolithography. After the Si-SiO2-graphene chip is dried a photoresist is spin coated on to the

surface, see Figure 2.3a. Photoresist is a chemical that becomes soluble in developer when

exposed to certain wavelengths of light. For our purposes microposit S1813 was used as our
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photoresist which has a sensitivity at 450nm. After the resist is spin coated on and dried at 60

◦C for 1 minute, then the chip is exposed to 450nm light in a desired patterned for the graphene;

Figure 2.3: Photolithography process. Dark purple layer is silicon wafer, the light purple layer
is 300nm of SiO2, the black layer is graphene, and the red layer is photoresist.

shown in Figure 2.3b. The chip is then developed so that the soluble photoresist is removed,

after which it is placed in a PE-200 Oxygen Plasma Etcher to remove the unwanted graphene.

The result is illustrated in Figure 2.3c. Finally, the excess photoresist is removed in an acetone

bath for 1 hour, rinsed with deionized water, and dried with N2 the final patterned graphene

chip is shown in Figure 2.3d. After this process is complete the patterned Si-SiO2-graphene

Figure 2.4: Photolithography process. Dark purple layer is silicon wafer, the light purple layer
is 300nm of SiO2, the black layer is graphene, the red layer is photoresist, and the yellow layer

is gold.
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chip is ready for metal leads to be deposited. The process of photolithography and metal

evaporation are laid out in more detail in Figure 2.4. The process is quite similar to the

graphene patterning recipe discussed previously except that after the lead patterned is exposed

and developed, see Figure 2.4c, then approximately 100nm of gold is evaporated onto the chip’s

surface; see Figure 2.4d. The excess gold and photoresist is removed with a acetone bath on a

hot plate at 60 ◦C, the bath is agitated lightly after about 15 minutes of soak. This continues

until all excess metal is removed and then rinsed with deionized water and finally dried with

N2[5].

The preceding process produces a functioning GFET chip and is described from the per-

spective of the resources available at the Linfield labs. However, the chip used to measure the

data quoted in this thesis, Figure 2.1, was fabricated at OSU by the Minot group. Although,

the Minot group used similar processes.

2.2 Hall effect measurement

The Hall effect is the production of a voltage, Vhall, across a conducting sheet of material with

a current flow in the presence of an applied magnetic field that is perpendicular to the current

flow. This Vhall is due to the Lorentz force acting on the charge carriers of the current; making

the charge carriers curve their paths. This causes a difference in charge carrier density from one

side of the conducting sheet to the other; hence, a voltage is produced. This effect is illustrated

in Figure 2.5. Since graphene is ambipolar, the Hall effect can be measured when holes are the

charge carriers present in the graphene, Figure 2.5a, and when electrons are the charge carriers

in the graphene, Figure 2.5b. The different charge carriers produce a voltage of opposite sign

from each other.
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Figure 2.5: A magnetic field pointing into the page is shown as well as a current running from
left to right. Schematic of a) the Hall effect for hole doped graphene with a positive Vhall and

b) the Hall effect for electron doped graphene with a negative Vhall.

The Hall voltage measurement of our graphene device was made using the following setup.

The finished GFET was constructed so that a current could be applied to the sheet of graphene

and voltages could be read across the graphene sheet as seen in Figure 2.6a. This geometry

is necessary to take Vhall measurements from the device. It was also necessary to control the

external voltage so that the charge carriers present in the graphene sheet could be tuned from

electrons to holes and vice versa. This was done by placing approximately 100µL of electrolyte

in a drop on top of the device with a micropipette. Note that three different electrolytes were

Figure 2.6: a) Graphene device with gold leads and direction of current labeled. b) Cross-
section of GFET with Pt probes in electrolyte and direction of magnetic field labeled.
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tested; 100mM NaCl, 15mM NaCl, 1M Na2SO2, and 1-Butyl-3methylimidazolium Hexafluo-

rophosphate. Two platinum probes were inserted into the electrolyte, see Figure 2.6b, and

the GFET was inserted into an electro-magnet; maintaining a magnetic field of approximately

±500mT. A Kiethly 2000 sourcemeter applied a constant current of 5µA. The gate probe applied

the external voltage required to tune the type and number of charge carriers in the graphene

sheet. This voltage, Vgate, was controlled by the DC voltage output on the SR830 Lock In

Amplifier and swept from 0V to approximately 0.8V at a rate of 100 samples per second. A

circuit diagram of the experiment is illustrated in Figure 2.7. The second probe

Figure 2.7: Circuit diagram of the measurement setup.

in the electrolyte, the reference probe, actually measures the voltage that the graphene effectively

sees, the Vref. The reason for this is because the electro-chemistry of the probe-electrolyte inter-

face makes direct values applied to the gate probe unreliable. The reference probe importance is

highlighted in Figure 2.9, where hysteresis is apparent in the Vgate curve but the Vref curve seem-

ingly removes this hysteresis. An example of the Hall measurement is shown in Figure 2.8.The

peak of highest Vxx corresponds to the highest resistance and the state in which no charge
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Figure 2.8: Data showing a) Vxx and b) Vxx as
a function of Vref

carriers are available in the graphene sheet. This

is the Dirac point and corresponds to the point at

which graphene switches from holes to electrons

in Figure 2.8b, illustrated by the flip in sign of

the Vhall measurement.

A third voltage measurement was made

for the GFET; the effective resistance of the

graphene sheet,Vxx. These measurements were

made with the Kiethly 2000 sourcemeter and cor-

respond to taking the voltage between leads 1

and 2 in Figure 2.6a. The program, LabVIEW

was used to collect the voltage measurements;

Vxx, Vgate, and Vref.

Figure 2.9: Vxx versus Vgate (red) and Vref

(black) plot.



Chapter 3

Theory

Consider a metal electrode within an electrolyte as seen in Figure 3.1. When a potential is

applied to the electrode, ions in the electrolyte will be attracted to the electrode surface;

Figure 3.1: Illustration of surface interactions of
a charged metal electrode in an electrolyte solution.
The layer of charges labeled with a thickness x form
the Stern layer, the layer labeled with a thickness d

form the diffuse layer, and λ = x+ d.

creating an electrostatically charged layer in

the electrolyte with a thickness,

λ = d + x[6]. The density of charges is high-

est at the electrode-electrolyte interface and

then remains dense for some depth away from

the electrode until it drops off to equilibrium

in the bulk electrolyte, see Figure 3.2. This

causes a separation of charge with two dis-

tinct thicknesses; one with a thickness of x,

called the Stern layer, which corresponds di-

rectly to the size of the ions being attracted most acutely to the charged electrode, and another

11
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with a thickness of d, called the diffuse layer, which is composed of charges that are being pulled

from the bulk electrolyte to screen out the potential applied to the electrode.

The two separations of charge form two capacitors in series. The total capacitance

Figure 3.2: Diagram of relative charge density as
a function of distance from the electrode. The Stern
distance is labeled x and the diffuse distance is la-

beled d.

of this system is called the double layer ca-

pacitance, Cdl. Each capacitor in this system,

Cx and Cd, can be modelled as parrallel plate

capacitors with the form, C = kε0A
l where l

is the distance between the plates, k is the

permittivity of the dielectric in our case wa-

ter, A is the area of the plates, and ε0 is the

permittivity of free space. Then,

1

Cdl
= 1

Cd
+ 1

Cx

Cdl = CxCd
Ctx+Cd

=
(kε0A)2

dx
kε0A
x

+
kε0A
d

= kε0A
d+x

= kε0A
λ . (3.1)

So it is possible to predict theoretically the Cdl for a known x and d value where x is the effective

diameter of the ion, and d can be found with the Debye-Hückle approximation with d ∝ 1√
c

where c is the concentration of the electrolyte[6].
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However, this model depends on a bulk metal electrode and does not take into consider-

ation the unique electronic properties of graphene. The literature generally quotes these metal

electrode experiments for the Cdl values of graphene devices but if these values were unreliable

then quotes for graphene properties such as mobility may also be affected. Mobility is the mea-

sure of how easily charge carriers are able to move through a material and it is often determined

for graphene using the following relationship;

µ =
1

C

∆σ

∆Vgate
(3.2)

where C is the total capacitance of the GFET system and σ is the conductivity of the graphene[7].

Figure 3.3: A schematic of the voltages
formed in the system of Figure 2.6b.

The total capacitance, C, of the GFET can

be determined by analyzing the capacitances and

voltages of the system as seen in Figure 3.3. The

quantum capacitance, CQ, arises from graphene’s

low density of states, and is defined as;

CQ =
e2

~vF
√
π

√
n (3.3)

where e is simply the elemental charge, ~ is the

reduced Planck constant, vF is the Fermi velocity

given by approximately 106 ms−1, and n is the num-

ber of charge carriers in the graphene sheet[8]. Then the total capacitance is just the quantum

capacitance and double layer capacitance in series and is defined by;

C =
CdlCQ
Cdl + CQ

. (3.4)
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Capacitance is defined by; Q = ∆V C, where Q = en is the total charge and ∆V is the

change in voltage across the capacitor. Using this definition we can write Vref as simply the

sum of the voltages across each capacitor, and those voltages are given by;

VQ = en
CQ

(3.5)

Vdl = en
Cdl
. (3.6)

Now,

Vref = VQ + Vdl

= en
CQ

+ en
Cdl

substitute in equation 3.3

= en
e2

√
n

~vF
√
π

+ en
Cdl

= ~vF
√
πn

e + en
Cdl
. (3.7)

we have Vref as a function on n and Cdl[9]. From this Cdl can be extracted as long as n is

known. We can measure n using the Hall measurement discussed in Chapter 2. The Hall

voltage is defined by;

Vhall =
IB

en
(3.8)

where I is the current applied and B is the strength of the magnetic field applied[7]. From this

it is found that n ∝ 1
Vhall

.

With the information provided from equations 3.7 and 3.8 it is possible to determine the

Cdl for a GFET device without relying on the usual metal probe measurement values. This

theoretical background was implemented to infer a value of Cdl for a GFET system.



Chapter 4

Results and Analysis

Measurements of Vhall and Vref were collected for a GFET in different fluid environments.

These measured values were used to determine a Cdl value for the following solutions; 100mM

NaCl, 15mM NaCl, 1M Na2SO2, and 1-Butyl-3methylimidazolium Hexafluorophosphate. The

analysis process for the collected data and the results for each measured fluid are presented in

this chapter. In addition a summary of the results and a discussion of their implications, are

examined.

4.1 Analysis setup

The theory developed in chapter 3 allowed a method for fitting raw data of Vhall as a function of

Vref to extrapolate Cdl to be determined. An intrinsic charge carrier parameter n∗ is considered

as well in these fits so that equation 3.7 becomes;

Vref =
~vF
√
πn

e
+
en

Cdl
+ n∗. (4.1)

15
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The intrinsic number of charge carriers is attributed to charged impurities in the graphene

sheet[8].

A user-defined Origin 2016 nonlinear curve fit function was created to fit equation 3.8, an

example of this fit function can be seen in Appendix A. Note that n itself was not fit directly

but rather n−1, this is because the Vhall measurements taken were noisy and at some points

Figure 4.1: Vhall versus normalized Vref for 1-Butyl-
3methylimidazolium Hexafluorophosphate. Theoretical lines for
majority hole and electron charge densities shown separately as

blue and red respectively

approached or crossed 0V. If n

were to be fit directly then we

would be dividing by zero and the

values of Cdl and n∗ would be un-

reliable. An example of a Vhall

versus Vref graph exhibiting the

aforementioned noise and nonlin-

ear curves of best fit are shown

in Figure 4.1. It is also appar-

ent in Figure 4.1 that the Cdl val-

ues for when the graphene sheet

has majority holes, the blue fit, is

different than that for when the

graphene sheet has majority electrons, the red fit.

Note that the Dirac point did not occur at Vref = 0V so the reference voltage was normal-

ized by subtracting this Dirac voltage, VD, amount. Similarly the n∗ values were subtracted

from raw n measurements to normalize the results, this essentially just shifted the graph down

to zero to match the theoretical plots. These fits were found for each tested solution and plots

of n − n∗ versus Vref − VD were made with theoretical lines for the corresponding Cdl fits. An
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example of one of these plots is shown in Figure 4.2. The electron side fit is shown in red for

100mM NaCl. The remaining plots can be seen in Appendix B. It must be noted that as Cdl

Figure 4.2: 100mM NaCl. n versus normalized Vref for raw data
(black), the fits of Cdl (purple), and the quantum limit (dashed.)

increases to infinity equation 3.7

becomes;

Vref =
~vF
√
πn

e
(4.2)

This means there is an intrinsic

limit to any n versus Vref plot.

This limit, known as the quantum

limit, is shown in Figure 4.2 as the

dashed line.

4.2 Discussion

Table 1 outlines the measured Cdl

of every tested solution and compares that value to the metal electrode theory predicted values.

The uncertainty given in Table 1 were given by origins user defined function fitting software.

Table 4.1: Predicted and measured values of Cdl for NaCl, Na2SO4, and 1-Butyl-
3methylimidazolium Hexafluorophosphate. This illustrates the asymmetry in data collected.

Note that all measured values are 50% or lower than the predicted values.

Solution

Predicted
Cdl

(µFcm−2):
holes

Predicted
Cdl

(µFcm−2):
electrons

Measured
Cdl

(µFcm−2):
holes

Measured
Cdl

(µFcm−2):
electrons

Hexafluorophasphate NA 20.0 3.1 ± 0.4 5.3 ± 0.9

NaCl (15mM) 11.4 14.5 2.5 ± 0.2 7.0 ± 1.0

NaCl (100mM) 15.2 21.2 2.3 ± 0.2 17 ± 4.0

Na2SO4 (1M) 13.0 14.4 2.2 ± 0.4 5.2 ± 1.0
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They represent the standard deviation in the calculated parameters and it is worth noting that

the uncertainty is of the same order of magnitude for each value of Cdl, except for electron

measurement of the 100mM NaCl, implying that the fits were consistent. Another indication

of our data being consistent with the theory is the fact that our plot of n versus Vref lies below

the quantum limit curve, see Figure 4.2. A last indication of consistency with theory is that

the values found from the fitting parameter, n∗ ranged from 2.2-4.7×1011cm−2. Since each n∗

had the same order of magnitude this implies that our fits were of good approximation because

n∗ is an intrinsic property of the graphene sheet and should not change with fluid variation.

Finally, it was found that each fluid exhibited asymmetry in Cdl values not expected

form the theory. The hole doped graphene measurements yielded Cdl values of approximately

Figure 4.3: Difference of voltage at the quantum limit
(equation 3) and with the determined Cdl (equation 2).
The asymmetry found is evident in the difference of
slopes given for majority hole charge densities (blue)
and majority electron densities (red). Data taken with

1M Na2SO4.

the same magnitude and were significantly

lower than the measured electron doped

values. The slopes of the n versus ∆V plot

in Figure 4.3 are proportional to capaci-

tance since C = ne/∆V . The significant

differences in slope highlights the asymme-

try of the Cdl data.
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Conclusions

It was the subject of this thesis to investigate the double layer capacitance of a graphene-

electrolyte system. This was accomplished and useful data were taken to fully understand the

liquid gated GFETs electronic properties. It is necessary to understand and characterize the

Cdl completely in order to maintain a good understanding of the GFET-electrolyte system.

A unique method for determining the Cdl was implemented. The number of charge carriers

in the graphene was measured as a function of the Vfluid and a fitting function was used to extract

the Cdl value within a statistically reasonable uncertainty. It was found that our data exhibit

asymmetry depending on the type of charge carrier present in the graphene. This suggests a

difference of Cdl when holes are present in the graphene than when electrons are present. This

effect has been discovered in the literature but no satisfactory reason has been determined. It

may have to do with the size of ions affecting the distance of the Stern layer or it may have to

do with charge traps in the graphene sheet itself. Finally, our data suggest that Cdl is lower

above graphene than for a metal electrode. This is a finding that has consequences across the

field of graphene research. For instance, measurements of mobility and the known sensitivities

19
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of biological GFET sensors would be affected by our results.

Investigation of the double layer capacitance for a GFET can be expanded further. In

this thesis, data were collected for three electrolytic solutions. However, data for a larger range

of electrolytes and concentrations would improve the knowledge of how the Cdl differs from

previously quoted values and elucidate a yet unknown relationship between Cdl above graphene

and metal. Further, a more comprehensive examination of liquids with different sized ions will

help to rule out the cause of asymmetry in our data. If we do not continue to see the asymmetry

when the ion sizes are controlled, then we will be able to investigate other properties that could

contribute to the asymmetry such as trapped charges in the graphene sheet.



Appendix A

Fitting Function

Figure A.1: Nonlinear curve fit details showing equation used, fitting parameters, and
independent-dependent variables.

21
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Other Fluid Graphs

Figure B.1: 1M Na2SO4. n versus normalized Vref for raw data (black), the fits of Cdl

(purple), and the quantum limit (dashed.)

22



Appendix B Other Fluid Graphs 23

Figure B.2: 15mM NaCl. n versus normalized Vref for raw data (black), the fits of Cdl

(purple), and the quantum limit (dashed.)

Figure B.3: 1-Butyl-3methylimidazolium Hexafluorophosphate. n versus normalized Vref for
raw data (black), the fits of Cdl (purple), and the quantum limit (dashed.)
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