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Abstract 

This project tests and explores resonance of strings. Since all materials and mechanisms are 

affected by vibrations, it is important to know the frequencies at which resonance occurs. To 

explore this subject, strings were used as a model material to test the effect tension has on 

resonance. The fundamental frequencies and the corresponding modes of resonance were used to 

analyze the data. The results of this experiment show that increasing tension on a string increases 

its resonance frequency. Understanding the physics behind resonance frequency allows systems 

to be designed to take advantage of resonance properties, or to avoid resonance where it can be 

destructive. 
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1. Background 

Vibrations and resonance are what helps make up the surrounding materials and mechanisms. 

Vibrations can be applied to any area from the universal level to the subatomic level. There are 

many different forms of vibration that can be explored. Vibrations are used to promote harmony, 

like pianos and planetary orbits. In contrast, it is also known in destruction, such as singing to 

shatter a wine glass or in the collapse of Tacoma Narrows Bridge. These few examples show the 

importance of exploring resonance, thus making it not only relevant, but crucial information in 

many subjects.  

1.1 Vibration Background 

To understand vibrations and their applications, the areas of natural frequency and resonance 

should be defined. Natural frequency is the frequency, measured in Hertz, at which a system 

oscillates when not subjected to a continuous or repeated external force. The external forces can 

either be a driving or an opposing force. When an external force is applied it will most often 

result in dampened oscillations unless the natural frequency is approached. When forced 

frequencies match the natural frequency it is called resonance. More specifically, resonance is 

when an external force drives another system to oscillate with the greatest amplitude at 

specific frequencies. 

Since most objects are in motion it can be assumed that those things have their own natural 

frequency, making it a subject of study throughout many different fields, each using their own 

set of parameters resulting in multiple definitions of resonance. The different categories that 

specifically address this subject can include: electrical, chemical, optical, orbital, acoustic, 

mechanical, and atomic. For this thesis, the focus will be on the principles of mechanical and 

acoustic resonance of strings. 

https://en.wikipedia.org/wiki/Oscillation
https://en.wikipedia.org/wiki/Amplitude
https://en.wikipedia.org/wiki/Frequency
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1.2 Mechanical Resonance  

Mechanical resonance is most often related to examples including an oscillating spring or a 

swinging pendulum. One way to visualize mechanical resonance is to imagine someone 

swinging on a swing set. If someone were to push someone else on a swing set from one 

direction, only at the peak will the swing motion increase relatively quickly, even if the applied 

force was small. On the other hand, if the direction of the applied force was out of sync, or 

continuous in one direction with the swing then the expected result would be a decrease in 

motion and amplitude. This concept is used similarly when applied to string resonance. 

String resonance is where a length of wire shows distinct waves, forming nodes and 

antinodes. These waves can also be applied to hollow columns of air. A visual representation of 

string resonance is shown by Figure 1.1. 

 

Figure 1.1: Definition of Resonance. Explains resonance of both open ended and closed ended 
resonance. Nodes are marked by N. Replicated from HyperPhysics Concepts[1]. 

As resonance increases the number of nodes increases, the frequency at where these multiples 

occur are called modes of resonance. Different shapes, lengths, and the material itself can change 
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where the modes of resonance occur. Figure 1.1 compares a tube with both ends open versus a 

tube with one closed end. The modes of resonance were altered from this one change. 

1.3 Applications of Mechanical Resonance 

Mechanical and string resonance are used in musical instruments, clocks, and even buildings. 

Figure 1.2 shows how mechanical resonance is avoided by dampening movement of a 

skyscraper. The large mass acts as a dampening counterbalance to the skyscraper. Since the 

hanging mass is free to move about the building it can sway in an opposing direction to 

counteract the buildings movement. In theory, the momentum of the building plus the free 

hanging mass will result in a total momentum of zero. This is just one example of the various 

ways to avoid resonance in buildings in a constantly changing and developing field. It would be 

useful to be able to predict where resonance would occur. Exploring string resonance would be a 

helpful start on how to predict modes of resonance.  

 

 

 

 

 

 

 

 

 Figure 1.2: An example of a tower that uses a large pendulum high in a skyscraper to 
dampen swaying of the building. As momentum of building moves one direction, the 
hanging mass’s momentum moves in the opposing direction. The addition of 
momentums goes to zero. 

 



 
 

 
 

4 

2.Theory 

Finding the resonance of a material or system can often times be useful. Using a state of 

resonance can determine the stability of a system. Frequency can be modeled by mathematical 

equations and used to formulate figures and graphs. 

2.1 Finding resonance 

Locating the resonant frequency is done by applying a force or energy to a system where its 

periodic motion is matched by the timing and direction of force or energy. If the timing or 

direction does not match the periodic motion, then there will be opposing forces causing the 

mechanisms to dampen. Most of the time, objects are in a dampened state, therefore they are in a 

motionless state. When at resonance it is expected that a system would be driven to peaks, 

moving with great energy and in some cases cause destruction. Equation 1 is often used to find 

simple mechanical resonance. 

 𝑓 =
1

2𝜋
√

𝑘

𝑚
     (1) 

Where k is the spring constant and m the is mass. 

When frequency is graphed against amplitude, the resonant frequencies would be where the 

amplitude is at its peaks. The rest of the graph would have very little amplitude. An alternate 

way to compare resonance would be to plot frequency against transmissibility shown in Figure 

2.1 below. 
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Figure 2.1: A graphical representation of resonant frequency comparing transmissibility versus 
frequency. Peaks where input frequency ωA is equal to natural frequency ω0. Transmissibility is 
where the frequency can move the best without resistance [2,3]. 

A good intuition for what resonance would look like can be gathered from Figure 2.1 and 

applied to various fields including the resonance of strings. Referring to Figure 2.1, resonance is 

realized by where the amplitude is at its greatest. Transmissibility, the x-axis, is the ability of the 

material to conduct a certain frequency ratio. The transmissibility is at its greatest when the 

frequency ratio is at one. At this point, the frequency ratio is where the input frequency and 

resonant frequency are equal. A determining factor for the height of the transmissibility peaks is 

the damping coefficient. The dampening coefficient is determined by outside factors unrelated to 

the interference that occurs at frequencies away from resonance causing the transmissibility to 

approach zero. 
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2.2 String Resonance 

Strings have different resonance identities when compared to a simple mass on a spring or a 

simple pendulum. The variables in Equation 1 change from a spring constant k and hanging mass 

m when analyzing string vibration. First, the wave velocity must be found using Equation 2: 

𝑣 = 𝑓 ∙ 𝜆     (2) 

f is the frequency of the wire and λ is the wavelength. To identify λ, the length of the span of 

wire is divided by the number of nodes at a particular resonant frequency. The wavelength can 

be calculated by Equation 3: 

  λ 𝑛 =
2𝐿

𝑛
   𝑛 = 1,2,3, …         (3) 

L is the total length of the span and n is the number of nodes. Since the wave is on a string the 

following Equation 4 will be used to calculate the wave speed: 

   𝑣 = √
𝑇

𝑚∕𝐿
     (4) 

In Equation 4, v is the wave speed, T is the tension on the wire, and m/l is the mass per unit 

length. Equation 4 gives the velocity of a string stretched across a span. The velocity is 

determined by the tension T and mass per unit length m/L. Now the wave relationship can be 

applied to the stretched string that will then produce a standing wave. Strings have multiple 

modes of resonance called harmonics, the area where the strings vibrate most easily.  
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Figure 2.2: Modes of resonance called harmonics. N represents the number of nodes on the 

string at a given resonant frequency. [1] 

The Fundamental frequency is defined as the lowest frequency mode and can be calculated by 

using the velocity of a string and dividing it by half of the string length as shown in Equation 3 

        𝑓𝑛 =

𝑛√
𝑇

(
𝑚
𝑙

)

2𝐿
       (5) 

Where T is the tension m/L is the strings mass per unit length and L is string length and n is the 

number of nodes. Equation 5 can be used to determine the resonant frequency far all modes of 

resonance; knowing where resonance will occur can be very useful in its applications. 
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3. Experiment 

Every material and system has a resonant frequency. The resonant frequency is the natural 

frequency of vibration of a material or system that experiences no dampening forces. This 

frequency is parameterized by many factors such as size, shape, composition and tension. In this 

experiment, cotton aluminum, and steel strings were used. A system made of a certain material 

and length has a predictable resonant frequency. 

3.1 Materials 

In order to set up and explore resonance some materials were gathered. The materials 

included: strings of different densities and materials (cotton, aluminum, steel), a speaker capable 

of attaching to a wire, a function generator with variable frequencies, an amplifier, a stand and 

connectable frictionless pulley, an assortment of masses (30 to 100 grams) with an attachable 

hook for the string. These materials were used for Section 3.2. 

3.2 Set up 

This experiment was performed and set up according to Figure 3.1. This was done by first 

connecting the amplifier and function generator to a power source, which was a standard 

American 120 Volt wall plug. Since function generators typically operate at low voltages, they 

lack the minimum power to drive the speaker. The amplifier additionally allowed for greater 

control over the amplitude of wire movement. Once the function generator, amplifier, and 

speaker are all connected, one of the variable strings can now be connected to the speaker. The 

speaker had a small metal clip attached to the center of the speaker that was clamped to the 

string. The string was then strung across to a stand that had an assumed frictionless pulley  
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Figure 3.1: Set up of experiment. Function generator, amplifier, and speaker connected by wires. 
Hanging mass displayed as M and string displayed as wave spanning from frictionless wheel to the 
speaker. (b) Actual set up of experiment. 
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attached. A mass was connected to ensure a constant tension on the string. Now the experiment 

was properly prepared, and the experiments described in Section 3.3 could be conducted. 

3.3 Experiment 

This experiment consists of two sub sections, varying strings and varying tension. These 

experiments help to better understand wave and resonance behavior and the effects each of the 

variables will produce. Each section was executed by finding resonance through the scanning of 

frequencies which will be further explained in the following sections. 

3.3.1 Varying Modes 

The experiment used steel guitar wires, an aluminum wire, and cotton strings, attached to a 

function generator and amplifier. A string was strung in a straight plane from a frictionless 

pulley, with a 50-gram mass applied to the end, to the opposing end and attached to the speaker. 

The string had a span from the pulley to the speaker of 51 cm (uncertainty ±0.5cm). The 

frequencies were then scanned using the function generator from low to high frequency which 

revealed the resonance for each strings parameter. The speaker served as a one-dimensional 

function generator because it moved the wire along a single vertical axis. The resonant frequency 

was clearly shown by distinct waves revealing nodes along the wire. The frequencies were 

scanned from high to low frequency noting where different nodes of resonance occurred. Then 

the scanning of frequencies for the same wire was then repeated in the opposite direction, from 

low to high frequencies. This process was done to increase accuracy the experiment. The next 

string replaced the previous and the experiment was repeated for each of the varying strings. 
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3.3.2 Varying Tension 

The experiment consisted of hanging varying masses on one end of the string, in 10-gram 

(0.01 kg) intervals, then observed and recorded how resonance was affected. The frequencies 

were scanned carefully and similarly to section 3.3.1, when a stable mode of resonance was 

found it was kept for the entirety of the experiment for that string. Note that a different mode of 

resonance could be used for a different string because the affects of tension on resonance are not 

affected by the number of nodes. Tension was added to the string by placing more mass at the 

end in 10-gram increments. It was difficult to test higher tensions because of limitations in 

equipment. The higher tensions, above 100 grams, pulled too hard on the speaker and risked 

ripping and breaking it or caused significant distortion in the length of the string. This is source 

of error in the length of the string. The movement in the x-direction will change the resonant 

frequency unintentionally because string length has a direct effect on resonance. In hopes to gain 

more abundant and accurate data points, increasing the tension by a smaller interval is possible. 

This slight alteration would not significantly change the data that was already taken because the 

interval of change would be insignificant. Already, the change in frequency between the changes 

in resonance were slight changes, measurable by a few Hertz. 

3.4 Measurements 

Getting accurate and dependable data is achieved by using reliable measuring instruments. 

Various instruments were used in the measuring process each yielded different accuracy and 

precision. The mass of the wire was measured by a triple beam scale which gave an uncertainty 

±0.01 grams. Each wire was coiled and tied so that the complete string was being measured. The 

length of each string and the length of the span were measured using a meter stick giving an 

uncertainty of ±0.5 cm. The radius of the strings was measured using calipers giving an 
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uncertainty of ±0.02 mm. Recording the resonant frequencies displayed by the function generator 

was done so with an uncertainty ±0.5 Hz (Hertz). The precision of the function generator could 

be increased by using a digital displayed function generator of frequency rather than a dial 

display. 

While the experiment was in motion and string oscillations were occurring, there were 

additional sources of error that need to be discussed. The error can be found at the two endpoints. 

At one end of the experiment, the oscillating speaker allows the string to experience both 

horizontal and vertical forces. Ideally, the string only moves along the vertical y-axis, but since 

the piece connecting the speaker and string is not completely rigid it results in movement in the 

horizontal x-direction. The string moving in more than one plane causes some misleading and 

hectic vibrations increasing the source of error. On the other end of the string, where the mass, 

string, and pulley interact, there is also a source of error. When the string is in motion there is a 

slight back and forth tugging action. The tugging action makes a slight change in length of the 

string. The change in length directly effects the resonant frequency of the string according to all 

equations dealing with vibrations. Since the length variation is only subtle we can still use the 

experiment to gather data with small amounts of error. 
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4. Results and Analysis 

The data collected from the varying of nodes and varying tensions on many different strings 

results in the following sections. The comparison between the two variations will then be 

summarized and related. 

4.1 Variable modes 

The first set of experimental data is provided by varying string material and string density. 

The results are reported in Figure 4.1 in terms of wave speed versus density of wire (also referred 

to as mass per unit length). Data was originally gathered in terms of frequency and number of 

nodes. From this information, wave speed can be calculated using Equation 1 found in the 

Section 2. 

According to Equation 3, v is the wave speed, T is the tension on the wire (which is constant for 

this experiment), and m/l is the mass per unit length. The data used to plot Figure 4.1 is the 

average wave speed for each string, computed by Equation 3. Since the wave speed is ideally 

constant for its string the average value gives the most accurate value. The values on Figure 4.1 

follow the theoretical line of a square root function showing the decreasing trend of wave speed 

as mass density increases.  
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Figure 4.1: Density of string or wire (grams per meter) against average Wavespeed (meters per 
second). Red symbols represent guitar strings, blue symbols are cotton strings, the black line is 
the aluminum wire. The green line is the theoretical trend. Error bars created from the distance 
away from average value. 

 

Now that the behavior of wave speed and mass per length show a square root relationship, 

that information can be used to further understand resonance and its variables.  

Finding the fundamental frequency for some of the wires was difficult due to the restraints of 

the experimental set up. For example, the densest string, guitar four, would only produce a 

minimum of four nodes. The relationship between the increase in frequency and the resonant 

frequencies for different wires is shown by Figure 4.2. 
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Figure 4.2: Shows at which frequency nodes were produced for each wire. Each wire 
shows a linear trend for resonant frequencies. The string with the greatest density, 
guitar 4, has the lowest frequency and the greatest number of nodes. 

A linear relationship helps to show that resonant frequencies can be modelled and predicted. The 

best way to model at which frequency a wire will resonate is with Equation 5, located in Section 

3. This allows for the computation of the resonant frequency at its varying modes. The slopes of 

the lines are all linearly increasing but each have a unique slope. The strings with greater mass 

densities resonate at lower frequencies and higher number of nodes. 

4.2 Varying Tension 

The second part of the experiment used a string with a constant node and the tension for each 

string was varied. Doing this tested the reliability of how tension affects a strings resonance. For 

String 1 and String 2 as well as Guitar 1, Guitar 2, the data was reported where 3 nodes were 

present. Guitar 3 data taken at 4 nodes and Guitar 4 taken at 5 nodes. The wires could not be 

taken at the same number of nodes due to the limitations in the set up and equipment referred to 

in Section 3.3 and Section 3.4. The higher tensions pulled too hard on the speaker and risked 

ripping and breaking it. It is possible to put the strings at different nodes on the same graph 
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because for each independent string, the number of nodes was kept constant for the duration of 

the experiment. In addition, the purpose of varying tension is to show the trend of resonance 

compared to changing tension. Which leads to the results depicted by Figure 4.3. 

 

 

Figure 4.3: Shows the frequency at a particular mode of resonance and the square root 
value of tension (Newton) for wires. A linear relationship between frequency and tension 
can be observed by the each of the wires. 

The square root of tension was taken to create the horizontal x-axis. The square root was taken 

because the force of tension in the wire is related to the wave speed and wire density. The added 

tension causes the resonance to increase because it takes a greater wave speed to move the wire. 

This means that tension has a direct effect on the frequency of resonance and proficient results 

could be gathered. 

4.3 Discussion 

The data collected helps show the resonant frequency of wire as predictable. Many of the 

relationships are linear which makes for good expectedness and calculations. Figure 4.1 shows 
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may have been accomplished and if they are engineered to resonate at similar wave speeds. The 

addition of tension on a string showed dampening affect on string amplitude and an increased 

resonant frequency.  

Data was found where some strings began to repeat low frequency modes at higher 

frequencies. This data was not included in analysis because it occurred very rarely and 

infrequently making it inconsistent. This information could be worth further investigation in the 

future. This could help to establish a more specific relationship in the resonating modes, which 

would extend predictability. 
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5. Conclusion 

 

The resonant frequency is often a substantial part in the stability of a broad spectrum of 

applications. This experiment has explored and revealed that tension has an effect on resonance 

that can be predictable. The data shows resonance of waves on a string are measurable. Through 

the experimental process and analysis, dependence of resonance on tension agrees with the 

theory that resonance is affected by tension. It is clear in this experiment that added tension 

decreases the amplitude of the wave on a string. Dependence on mass density is less easily 

understood. Further exploration considering mass density of wires would be interesting and 

useful information. Going forward, adding tension or compression to other materials, such as 

solid objects, would be an effective way to increase knowledge and usefulness to this thesis. This 

would consist of finding new ways to vibrate materials of different shapes and sizes in the drive 

to find effects of resonance. 
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