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Abstract	
	

Nonlinear	Harmonic	Modes	of	Steel	Strings	on	an	Electric	Guitar	
	
Steel	strings	used	on	electric	and	acoustic	guitars	are	non-ideal	
oscillators	that	can	produce	imperfect	intonation.		According	to	theory,	
this	intonation	should	be	a	function	of	the	bending	stiffness	of	the	string,	
which	is	related	to	the	dimensions	of	length	and	thickness	of	the	string.		
To	test	this	theory,	solid	steel	strings	of	three	different	linear	densities	
were	analyzed	using	an	oscilloscope	and	a	Fast	Fourier	Transform	
function.		We	found	that	strings	exhibited	more	drastic	nonlinear	
harmonic	behavior	as	their	effective	length	was	shortened	and	as	linear	
density	increased.  
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Introduction	
	

The	guitar	is	a	stringed	instrument	that	can	be	used	to	produce	a	wide	range	

of	notes	by	effectively	changing	the	length	of	the	set	of	strings,	each	of	a	different	

linear	density.		The	strings	are	stretched	over	a	strong	piece	of	wood	with	one	side	

round	and	the	other	flat,	called	the	neck	and	fretboard	respectively,	with	strips	of	

metal	wire	set	into	the	fretboard,	called	frets.		On	an	electric	guitar,	vibrations	of	the	

metal	strings	are	sensed	by	pickup	coils,	amplified	by	a	simple	circuit,	and	finally	

outputted.		Below	is	a	diagram	highlighting	the	basic	parts	of	an	electric	guitar.	(See	

Fig.	1)	

	

	

			

	

	

	

	

	

	

Like	any	musical	instrument,	guitars	must	be	kept	in	tune	so	that	they	can	be	

used	to	produce	the	quality	of	sound	for	which	they	were	designed.		Possible	

contributing	factors	to	poor	intonation	have	been	studied	such	as	dead	spots	[5],	tone	

decay	[10],	and	fret-string	interactions	[1]	[13].		Other	factors	include	the	harmonic	

Fig. 1: Labeled diagram of an electric guitar [15]. 
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behavior	of	the	vibrating	strings	[3][11][12][14].		In	this	paper,	we	will	continue	to	build	

off	of	the	work	done	with	harmonics.		Harmonics	are	particular	frequencies	that	

yield	zero-amplitude	points	along	a	vibrating	string.		They	are	often	analyzed	as	a	

standing	wave	(a	snapshot	of	the	wave	at	its	greatest	amplitude).		

We	study	the	harmonic	vibrations	of	guitar	strings	and	we	believe	there	is	a	

relationship	between	the	nonlinear	nature	of	harmonics	on	a	string	and	its	bending	

stiffness.		This	matters	to	guitar	players	and	listeners	alike	because	the	presence	of	

sharpening	harmonic	modes	may	become	audibly	sharp	or	flat	when	played	in	

conjunction	with	other	notes	[7].		

		This	is	a	study	of	steel	strings.		While	most	sets	of	strings	are	made	of	steel,	

other	alloys	such	as	bronze,	copper,	and	nickel	are	used	in	the	industry	for	the	

variety	of	tonal	qualities	they	offer.	The	thicker	strings	responsible	for	producing	

lower	frequency	notes	are	not	made	from	a	single	core	of	steel;	rather,	they	consist	

of	a	softer	metal	–	usually	nickel	or	copper–	wound	around	a	steel	core.		Fig.	2	shows	

SEM	images	of	the	set	of	guitar	strings	used	in	this	experiment:		

	

	

	

	

	

	

	

	 Fig.	2:	SEM	images	of	a	standard	set	of	guitar	strings.			
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Using	an	electric	guitar	and	a	digital	oscilloscope	we	test	the	harmonic	

behavior	of	different	steel	strings	and	compare	it	to	theoretical	results	yielded	

through	known	relationships	between	harmonics	and	bending	stiffness.		Because	

wound	strings	(see	Fig.	2:	Low	E,	A,	D)	were	not	comprised	of	a	single	material,	they	

were	excluded	from	this	study	to	avoid	further	complexity.	
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Theory	

The	Ideal	String	
	

To	analyze	the	vibration	of	a	steel	string	we	must	first	understand	the	simplest	case,	

an	ideal	string.		An	ideal	string	is	infinitely	thin	(without	bending	stiffness)	and	has	

uniform	linear	density.		When	plucked,	two	wave	trains	propagate	in	opposite	

directions,	reflecting	off	of	the	two	fixed	ends,	which	is	the	bridge	and	either	the	fret	

or	the	nut.	These	two	wave	trains	continue	to	reflect	back	and	forth,	creating	an	

interference	called	a	standing	wave.		By	the	Principle	of	Superposition,	the	

interfering	waves	are	the	sum	

	

																																															𝑦 𝑥, 𝑡 = sin 𝑘𝑥 − 𝜔𝑡 + sin 𝑘𝑥 + 𝜔𝑡 																																					(1)	
	

Here,	𝑦	is	the	wave	amplitude,	𝜔 = 2𝜋𝑓	is	angular	velocity,	and	𝑘 = 2𝜋
𝜆 	is	the	wave	

number	with	𝜆	being	wavelength.		By	way	of	trigonometric	identities,	Eq.	(1)	can	be	

simplified	to		

	

																																																									  y x, t = 2sin 𝑘𝑥 cos 𝜔𝑡 				 	 																			(2)	

	

If	we	define	the	fixed	ends	to	be	at	𝑥 = 0 and 𝑥 = 𝐿,	when	a	string	is	plucked,	the	

only	waves	that	continue	any	longer	than	a	fraction	of	a	second	are	the	ones	which	

yield	an	amplitude	of	zero	at	those	positions.		Note	that	in	Eq.	(2)	the	first	term	

describes	amplitude	and	the	second	term	describes	frequency.		Here,	it	is	important	

to	note	that	the	result	of	Eq.	(2)	is	zero	at	both	fixed	ends,	say	𝑥 = 0, 𝑥 = 𝐿.		What	
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arises	is	an	infinite	amount	of	particular	frequencies	that	yield	positions	along	the	

string,	𝑥,	that	experience	an	amplitude	of	zero	at	all	times;	these	points	are	called	

nodes.		The	𝑛!"	harmonic,	denoted	𝑓! , is	a	frequency	that	produces	𝑛	number	of	

nodes.		Often	in	discussion	of	this	topic,	the	term	“harmonic”	is	synonymous	with	

“mode.”		The	first	three	harmonics	for	an	ideal	string	fixed	at	both	ends	are	shown	in	

the	figure	below.		Also	in	the	figure	is	the	sum	of	the	first	three	harmonics	where	it	is	

important	to	note	that	the	amplitudes	are	descending	from	the	first	to	third	

harmonic.	(See	Fig.	3)	

	

	

	

		

	

Figure	3:	Standing	waves	of	the	first,	second,	and	third	harmonics	(left);	sum	of	the	
first	three	harmonics	for	one	full	wavelength	plotted	on	time	vs.	amplitude	(right).	
	

	
Motivated	to	generate	a	relationship	between	harmonics	and	their	corresponding	

modes,	recall	the	speed	of	a	transverse	wave	traveling	on	a	string	[4],	

	

𝑣 = 𝑇
𝜇	

	
where	𝑣	is	wave	speed	,	𝑇	is	tension	force,	and	𝜇	is	the	string’s	linear	density.		For	

such	a	string	stretched	between	two	end	supports,	natural	modes	of	vibration	are	

given	by	

𝜆! =
2𝐿
𝑛            𝑛 = 1,2,3…	 	

	

(3)	

(4)	
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	where	𝜆!	is	wavelength	of	mode	𝑛	with	string	length	𝐿.		From	figure	3	and	Eq.	(4)	a	

critical	concept	arises:	all	harmonics	occur	when	a	string	is	initially	plucked.		Again,	

there	are	infinitely	many	frequencies	that	appear	when	a	string	is	first	plucked	but	

most	of	them	are	damped	by	the	bridge–fret/nut	interaction.		Speed	and	wavelength	

are	both	related	to	frequency, 𝑓,	through	

	
 𝑓! =

𝑣
𝜆!

              𝑛 = 1,2,3…	

	
	

By	substitution	of	Eqs.	(3)	and	(4)	into	(5),	

	

𝑓! =
𝑛
2𝐿

𝑇
𝜇 = 𝑛𝑓!         𝑛 = 1,2,3…	

	

Here	we	have	a	way	of	calculating	the	frequency	of	each	mode	of	vibration	for	a	

string	with	specific	properties.		We	refer	to	𝑓!	as	the	fundamental	frequency.	Notice	

the	positive	linear	relationship	between	frequency	and	mode.		In	the	ideal	case	

length,	tension,	and	linear	density	are	assumed	to	be	constant.		

	

Bending	Stiffness	
	

The	ideal	string	model	breaks	down	when	we	no	longer	make	the	assumption	that	

the	string	is	infinitely	thin.		As	a	result,	harmonics	do	not	add	together	to	produce	a	

wave	that	is	consistent.		Complication	ensues	when	we	incorporate	thickness	and	

material	properties	of	the	string	[4]:	

	

(5)	

(6)	

(7)	
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𝑓! = 𝑛𝑓! 1+ 𝐵𝑛! 1+
2
𝜋 𝐵 +

4
𝜋𝐵 	

		
with		

𝐵 = 𝐸𝑆𝐾! 𝑇𝐿!	

being	bending	stiffness.		Here,	bending	stiffness	is	a	property	of	a	string	of	given	

material	with	𝐸,	modulus	of	elasticity,	𝑆,	cross-sectional	area	and	radius	of	gyration,	

which	for	a	cylinder	of	radius	𝑎	is	𝐾 = 𝑎 2.	Clearly,	Eq.	(7)	is	a	departure	from	the	

linear	relationship	between	frequency	and	mode.		It	is	this	nonlinear	equation	that	

we	will	use	later	to	compare	with	results	obtained	from	our	experiment.	

	

Music	Theory	
	
We	care	about	the	sharpening	of	harmonics	because	there	are	potential	

ramifications	for	the	purity	of	notes	as	they	are	played	together.		Consider	two	

separate	strings	of	length	L	fixed	at	both	ends.		If	we	take	one	string	and	stop	it	

halfway	so	that	its	new	length	is	1/2	L,	we	would	be	able	to	produce	a	note	that	is	

twice	the	frequency	of	the	note	produced	by	a	string	of	length	L.		This	note	is	called	

an	‘octave.’		Notice	that	the	frequency	of	the	octave	is	the	first	harmonic	of	the	

original	note.		If	we	were	to	take	a	string	of	the	same	length	and	stop	it	at	2/3	L	we	

would	produce	a	note	that	is	called	a	‘fifth.’	

	Octaves	are	notes	separated	by	an	interval	of	twelve	half	steps.		The	interval	

of	perfect	fifths,	as	it’s	called,	consists	of	notes	separated	by	seven	half	steps.		Using	

this	interval,	chords	can	be	made	by	playing	two	or	more	of	these	fifths	together.		

Hence,	it	is	crucial	that	chords	are	comprised	of	notes	that	are	in	tune	or	they	will	

(8)	
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suffer	a	beat	frequency,	which	is	the	periodic	oscillation	in	total	amplitude	of	a	

compound	wave	comprised	of	multiple	component	frequencies	[8].	
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(a)	

Experimental	Methods	
	

In	this	experiment,	the	measurement	procedure	consisted	of	plucking	a	guitar	string	

and	obtaining	the	component	frequencies	of	the	signal	using	the	Tektronix	TDS	

2002B	oscilloscope.		Figure	4	shows	a	schematic	of	the	experimental	setup.	

	

	

	
	
	
	
	
	
	
	

	
	
	

	
	
	
	

	
	

	
	
	
	
	

Fig.	4	Schematic	of	experimental	setup.	(a)	Tektronix	TDS	2002B	Oscilloscope.	(b)	
Schecter	C-1	Electric	Guitar.	(c1)	Connection	between	guitar	cable	and	Channel	1.		
(c2)	Expanded	diagram	of	connection	(d)	Connection	between	guitar	and	guitar	
cable.	
	

The	Tektronix	TDS2002B	Oscilloscope	served	the	purpose	of	this	experiment	

well	because	of	its	Fast	Fourier	Transform	(FFT)	and	USB	functions.		Three	

parameters	of	the	FFT	are	adjustable:	source,	window	and	zoom.		Source	

(b)	

(c1)	

(d)	

+V	

Ground	

(c2)	
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determines	which	channel	is	sampled.		Only	one	channel	was	used	in	this	

experiment.	Three	types	of	window	settings	determined	frequency	resolution	and	

amplitude	accuracy.		Both	measuring	periodic	waveforms,	the	“Hanning”	and	

“flattop”	window	modes	most	accurately	judged	frequency	and	amplitude,	

respectively.		The	third	window	option	was	“rectangular”,	lending	special	attention	

to	waveforms	without	discontinuities.		Catering	to	the	focus	of	the	experiment,	

“Hanning”	was	the	optimal	choice.		Zoom	determines	horizontal	magnification	of	the	

data	with	options	of	X1,	X2,	X5,	X10.		Once	set,	window	and	zoom	were	held	constant	

whereas	sampling	rate	was	cycled	through	when	collecting	a	set	of	data.		The	

oscilloscope’s	range	was	between	5.0	samples	per	second	(S/s)	and	2.0	GS/s	but	for	

the	purposes	of	measuring	frequencies	produced	by	a	guitar	a	range	of	1.0	kS/s	to	

50.0	kS/s	was	sufficient.		Each	sampling	rate	scanned	0	Hz.	to	the	Nyquist	frequency,	

which	is	half	the	sampling	rate,	to	avoid	aliasing.		More	detailed	information	can	be	

found	in	the	oscilloscope’s	manual.	

With	the	oscilloscope	tuned,	special	attention	had	to	be	paid	to	the	guitar	and	

how	each	string	was	plucked.		A	standard	1.0mm	guitar	pick	was	used	to	excite	the	

strings	during	the	experiment.		As	Politzer	suggests	[11],	the	angle	at	which	a	string	is	

plucked	relative	to	the	fretboard	affects	the	intensity	of	vibration	immediately	after	

it	is	plucked.		It	turns	out	that	plucks	parallel	to	the	fretboard	produce	the	highest	

intensity	vibrations	with	the	least	decay.		Thus,	in	order	to	stay	consistent	with	the	

plucking	hand	as	best	as	possible	without	some	sort	of	automated	process,	the	

experimenter	did	entire	sets	of	data	at	a	time	being	careful	to	maintain	steady	hand	

position,	plucking	force	and	plucking	position	along	the	string.			
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Determining	the	moment	at	which	the	sample	was	taken	required	some	

technique	as	well.		Immediately	after	a	string	is	plucked	there	is	a	“twang,”	as	it	is	

referred	to,	that	is	the	audibly	positive	shift	in	frequency	due	to	what	Errede	

suggests	is	the	extreme	initial	amplitude	generated	by	the	pluck	[3].		Because	of	this	

effect,	which	lasts	less	than	a	tenth	of	a	second,	the	proper	sample	to	take	was	just	

after	the	pluck.		This	entailed	setting	the	oscilloscope	automatic	trigger	and	pressing	

STOP	on	the	second	or	third	sampling	depending	on	the	rate.		For	the	slower	rates,	

such	as	a	1	kS/s	and	2.5	kS/s,	the	sampling	time	was	too	long	to	take	the	second	

frame	because	by	then	the	intensity	of	the	vibrating	string	decayed	beyond	

measurement.	

With	the	oscilloscope	and	guitar	prepared	for	data,	samples	could	then	be	

taken.		As	previously	described,	the	sampling	of	the	oscilloscope	was	paused	just	

after	the	initial	pluck	of	a	string.		Utilizing	the	USB	function	of	the	oscilloscope,	the	

waveform	data	was	saved	onto	a	flash	drive.		Organization	was	critical	due	to	the	

volumes	of	data	collected.	Data	was	separated	first	into	folders	differentiated	by	

string	then	into	folders	according	to	fret.		Data	was	not	separated	into	their	own	

subfolders	based	on	sampling	rate	because	such	information	was	included	in	the	

waveform	file.	

The	oscilloscope	saved	the	data	as	a	Comma	Separated	Document	(CSD)	

where	each	point	was	a	coordinate	of	frequency	and	intensity.		These	data	were	

then	put	into	the	computer	program,	Origin,	in	order	to	better	fit	the	points.		Excel	

was	used	to	keep	a	list	of	the	fitted	points.		To	bring	it	all	together,	Mathematica	
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proved	useful	in	calculating	theoretical	data,	which	was	compared	directly	to	the	

experimental	data.		Greater	detail	of	the	analysis	is	described	in	the	next	section.	
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Results	&	Analysis	
	
	 	In	this	experiment	only	the	three	thinnest	strings	on	the	guitar	(G,	B,	High	E)	

were	analyzed	because	they	were	solid	steel	whereas	the	other	three	strings	(Low	E,	

A,	D)	have	copper	or	nickel	winding	around	solid	steel	cores.		The	physical	

properties	of	the	strings	used	are	provided	in	Table	1	below.		

	

Table	1	Physical	properties	of	G,	B,	and	High	E	strings	used	in	the	experiment.	Diameter	was	

obtained	using	veneer	calipers,	Tension	through	manufacturer	data,	and	f0	from	the	oscilloscope.			

	 String	

	 G	 B	 High	E	

Diameter	(mm)	 0.406	 0.279	 0.228	

Estimated	Tension*	(N)	 65.3	 49.0	 58.4	

Measured	f0	(Hz.)		 194.8	 246.2	 327.6	

*Tension	while	in	standard	tuning	and	on	fret	zero,	as	per	the	manufacturer	of	the	strings	used,	

D’Addario	XL120.	

	

Each	set	of	data	began	as	a	reading	from	the	oscilloscope	in	the	form	of	1024	

points	spanning	a	tunable	range	of	frequency.		Sampling	rates	used	in	this	

experiment	varied	from	1.0	kS/s	to	50.0	kS/s	with	respective	intervals	between	data	

of	0.488	Hz.	to	24.41	Hz.		Figure	5	is	an	example	of	raw	data	collected	from	the	

oscilloscope.		Note	that	although	there	are	spikes	in	the	data	they	are	not	reliable	

due	to	the	sampling	interval.	Generally,	the	peaks	close	to	the	maximum	threshold	

were	ignored	because	data	from	faster	sampling	rates	suggested	the	actual	peak	

was	slightly	beyond	the	threshold.			
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Fig.	5	Raw	data	collected	from	the	oscilloscope.	High	E	String,	fret	1,	10.0	kS/s	

	

Better	accuracy	could	be	obtained	from	the	raw	data	by	using	Origin	to	fit	

Gaussian	curves	to	each	peak.		Using	the	“Fit	Multiple	Peaks”	function,	up	to	12	

peaks	at	a	time	could	be	modeled.		For	some	of	the	peaks	that	were	of	low	intensity	

but	higher	than	that	of	noise,	the	function	“Fit	Single	Peak”	was	required.		Figure	6	

shows	a	snapshot	of	both	a	multiple	peak	analysis	and	single	peak	analysis.	
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Fig.	6	Experimental	data	fitted	
using	Origin.	High	E	String,	fret	1,	
10.0	kS/s	
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After	each	fit	of	the	raw	data,	the	values	of	the	peaks	were	recorded	in	Excel	

spreadsheets.		It	was	these	data	that	we	considered	to	be	our	experimental	data.	

The	following	figures	exhibit	experimental	data	and	accompanying	

theoretical	curves	calculated	using	Eq.	(7)	along	with	the	information	from	Table	1.		

For	each	string,	results	for	frets	0,	12,	and	24	are	given.		The	three	frets	were	chosen	

because	they	correspond	to	the	first	three	harmonics—𝑓! at	the	full	length,	𝑓! at	

half-length,	and	𝑓! at	one-third	length.		The	x-axis	is	the	mode,	n,	and	the	y-axis	is	

frequency	of	mode,	fn	,	divided	by	the	mode.		The	motivation	for	presenting	the	data	

in	such	a	fashion	is	that	it	makes	more	visible	an	increasing	shift	in	harmonics,	

which	is	what	we	would	expect	to	see	in	a	string	with	high	bending	stiffness.		Note	

that	an	ideal	string	would	be	a	horizontal	line	with	the	only	y-value	being	the	

fundamental	frequency.		By	Eq.	(7)	we	would	expect	to	see	the	most	drastic	positive	

shifts	for	fret	24,	then	fret	12,	then	fret	0,	regardless	of	string.		Additionally,	the	

same	equation	suggests	that	there	would	be	greater	shifts	in	the	thicker	strings	on	

any	given	fret.		Note	that	in	the	discussion	of	these	figures	any	shift	in	frequency	

describes	a	deviation	from	the	fundamental	frequency	when	divided	by	the	

corresponding	harmonic	number,	𝑛.		Therefore,	each	point	represents	a	frequency	

shifted	𝑛	times	away	from	what	the	frequency	would	ideally	be	at	mode	n.	Graphs	

can	be	compared	in	this	manner	because	the	x-scale	is	the	same	in	every	graph	for	

the	Figs.	7,	8	and	9	below.			
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From	Fig.	7	we	can	see	that	as	the	string	length	decreases	(fret	number	increases)	the	

harmonics	shift	more	significantly.		On	the	0th	fret	we	see	a	+5	Hz.	shift	at	𝑛 = 20.		For	the	

12th	and	24th	frets	we	see	a	+5	Hz.	shift	reached	at	roughly	𝑛 = 8	and	𝑛 = 3	respectively.		

	

	

	

Fig.	7	Deviation	from	integer-multiple	
harmonic	nature	of	the	G-string	on	frets	0,	
12,	and	24.	Dots	denote	experimental	data,	
dashed	lines	denote	ideal	predictions	from	
Eq.	(6),	and	solid	lines	denote	predictions	
from	Eq.	(7).	
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Figure	8	continues	the	trend	observed	in	Fig.	7	but	for	the	B-string.		Comparing	the	two,	

we	see	that	in	each	case	between	the	0th,	12th	and	24th	frets,	the	thicker	G-string	displayed	

a	more	drastic	shift.	

	

	

	

Fig.	8	Deviation	from	integer-multiple	
harmonic	nature	of	the	B-string	on	frets	0,	
12,	and	24.	Dots	denote	experimental	data,	
dashed	lines	denote	ideal	predictions	from	
Eq.	(6),	and	solid	lines	denote	predictions	
from	Eq.	(7).	
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With	the	third	and	final	set	of	data,	Fig.	9	completes	the	trend	observed	in	the	previous	

two	figures.		As	the	thinnest	of	the	strings,	the	High	E-string	exhibits	the	least	drastic	of	

the	shifts	for	each	fret.		From	these	figures	we	observe	proportionality	between	

nonlinear	harmonic	behavior	and	both	the	inverse	of	length	squared	and	cross	sectional	

area	as	suggested	by	Eq.	(7).		To	highlight	the	inverse	of	length	squared	dependency	we	

can	look	at	each	string	as	an	individual	case	and	see	that	as	the	length	of	the	string	

decreases	we	see	a	greater	positive	shift.		As	for	the	cross	sectional	area	dependency,	

we	can	look	at	each	fret	as	an	individual	case	and	compare	the	harmonic	shifts	for	each	

string.		Indeed,	we	see	that	for	each	fret	the	G-string	had	the	most	significant	shift,	

Fig.	9	Deviation	from	integer-multiple	
harmonic	nature	of	the	High	E-string	on	
frets	0,	12,	and	24.	Dots	denote	
experimental	data,	dashed	lines	denote	
ideal	predictions	from	Eq.	(6),	and	solid	
lines	denote	predictions	from	Eq.	(7).	
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followed	by	the	B-string,	and	lastly	by	the	High	E-string	(descending	order	of	

thickness).		

	 When	both	contributing	factors	are	taken	into	account,	direct	comparisons	

between	strings	can	be	made	for	a	given	note.		In	Fig.	10,	the	same	note	(High	E)	was	

played	on	each	of	the	three	strings.		Both	length	and	linear	density	are	being	varied	in	

this	example.		

	

	

Figure	10	concurs	with	the	behaviors	observed	in	the	previous	three	figures.		

These	results	suggest	that	one	can	optimize	the	intonation	of	their	play,	given	the	

option	to	play	the	same	note	on	different	strings.			

Error	in	the	data	stems	from	the	potential	lack	in	low-frequency	sensitivity	of	

the	oscilloscope	as	well	as	the	possibility	that	the	pickups[6]	and	circuitry	of	the	electric	

Fig.	10	Deviation	from	integer-multiple	
harmonic	nature	of	the	G,	B,	and	High	E	
strings	played	on	the	same	note	(roughly	
that	of	the	open	High	E-string).	Dots	
denote	experimental	data,	dashed	lines	
denote	ideal	predictions	from	Eq.	(6),	and	
solid	lines	denote	predictions	from	Eq.	(7).	
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guitar	are	not	built	to	be	sensitive	to	frequencies	far	above	the	third	harmonic	of	the	

High	E	string	(roughly	1318	Hz.).	
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Conclusion	
	

Nonlinear	harmonic	behavior	was	observed	in	the	G,	B,	and	High	E	strings	of	an	

electric	guitar.		In	accordance	with	the	prediction	of	Eq.	(7),	results	show	that	the	

degree	of	nonlinear	harmonic	behavior	is	greater	as	string	thickness	increases	and	

length	decreases.		Our	observations	agree	with	that	of	Politzer	[11].		From	the	results,	it	

is	possible	that	observed	deviations	in	harmonics	would	be	perceivable	(see	[9]).		

Further	research	could	include	testing	wound	strings	for	similar	behavior.			

	 Sources	of	error	in	this	study	vary	from	human	measurement	to	instrumental	

limitations.		It	was	not	possible	to	maintain	perfect	consistency	in	plucking	the	strings	

so	there	may	have	been	harmonics	that	were	too	faint	to	observe.		Better	equipment	

could	have	been	used	because	our	oscilloscope	was	only	able	to	achieve	a	precision	of	

+/-	24.41	Hz.	at	50.0	kS/s.		This	sort	of	error	was	only	significant	in	low-frequency	

measurement,	which	was	critical	because	the	theoretical	lines	in	Figs.	7,	8,	and	9	were	

calculated	based	on	the	fundamental	frequency.		Ideally,	we	would	be	able	to	scan	that	

range	of	data	with	a	precision	of	closer	to	+/-	0.5	Hz.		Because	we	chose	to	analyze	the	

vibration	of	the	strings	through	electronic	means	(guitar	and	pickup	system),	it	may	

just	be	that	electric	guitars	are	not	made	to	register	harmonics	far	beyond	the	fifth	or	

sixth.		It	would	be	interesting	to	replicate	the	experiment	with	an	acoustic	analysis	

instead	and	compare	results.	

	 It	is	not	tangible	to	eliminate	steel	as	the	main	metal	used	in	guitar	strings	but	

out	of	studies	such	as	this,	there	may	develop	new	techniques	for	compensating	this	

effect.		Perhaps	strings	of	non-uniform	density	could	be	designed	specifically	to	

minimize	skew	in	harmonics	all	throughout	the	length	of	the	fretboard.	
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