1-1-2014

Launching through the Surf Traveling Exhibit Panel 11: Turning Oars for a Dory

Tyrone Marshall
Linfield College

Brenda DeVore Marshall
Linfield College

Follow this and additional works at: http://digitalcommons.linfield.edu/dory_exhibit

Part of the Cultural History Commons, Oral History Commons, Speech and Rhetorical Studies Commons, and the Theatre and Performance Studies Commons

Recommended Citation
http://digitalcommons.linfield.edu/dory_exhibit/18

This Exhibit Panel is brought to you for free via open access, courtesy of DigitalCommons@Linfield. For more information, please contact digitalcommons@linfield.edu.
Turning Oars for a Dory

In the early 1960s, Paul Hanneman and Terry Learned purchased a basic homemade lathe for turning oars. When the partners went to pick it up from the farmer in Tillamook who built it in the 1950s, they found a basic shell and a number of loose parts in boxes. They brought the lathe back to Paul’s shop and reassembled it. It consists of a number of Model T Ford gears, wood pulleys, and leather belts that move forty-four speeds for the lathe.

The oars are now ready for Paul to complete the finishing touches.

Project Collaborators—Faculty

- Brenda DeVore Marshall
- Rhianna Bennett
- Mary Beth Jones
- Tyrone Marshall
- Kathleen Spring
- Daphne Dossett
- Whitney Weber

Project Assistants—Students

- Stephanie Raso
- Andrea Snyder
- Jackson Miller
- Cassidy Davis
- Dave Larkins

Exhibit Design

- Alicia Schnell
- Gabrielle Leif
- Chris Forrer
- Casee Clark

Turning Oars

Image 1 features the “business end” of the lathe. A motor, which operates the cutter head that has three blades in it, sits on the center left side. Image 3 shows the location of these blades as they are sharpened. The headstock is visible in the center of Image 1. It holds the blade end of the oar blank. The headstock is made from a piece of ship channel with a pin in the middle that helps secure the blank in place.

Image 2 depicts the tailstock of the lathe. The center of this fits into the opposite end of the oar blank, shown in Image 6. Adjusting the wheel on the back end puts pressure on the back of the oar blank to help hold the material in place. The spacing between the headstock and tailstock is long enough to turn a blank that is 10’-6” long.

Image 4 reveals the pattern of the handle and the round portion of the oar as it moves down to the paddle end. A pin, which is connected to the cutting head, rides along this pattern.

Image 5 shows the “follower arrest.” This machine part goes around the shaft of the oar to help stabilize the material as the cutting head moves down the handle. At a specific point the follower arrest will trip from the carriage in the cutting head gets close to the wider blade of the oar stock.

The oar blade has a pin in the middle that helps secure the blank in place. Image 3 shows the location of these blades as they are sharpened. The headstock is visible in the center of Image 1. It holds the blade end of the oar blank. The headstock is made from a piece of ship channel with a pin in the middle that helps secure the blank in place.

Terry checks and centers the oar blanks. Paul cuts two blanks from Sitka Spruce or old growth Douglas Fir timbers, 2-1/2” thick by 9” or 10” wide and 14’ long.

In the early 1960s, Paul Hanneman and Terry Learned purchased a basic homemade lathe for turning oars. When the partners went to pick it up from the farmer in Tillamook who built it in the 1950s, they found a basic shell and a number of loose parts in boxes. They brought the lathe back to Paul’s shop and reassembled it. It consists of a number of Model T Ford gears, wood pulleys, and leather belts that move forty-four speeds for the lathe.

The oars are now ready for Paul to complete the finishing touches.

Project Collaborators—Faculty

- Brenda DeVore Marshall
- Rhianna Bennett
- Mary Beth Jones
- Tyrone Marshall
- Kathleen Spring
- Daphne Dossett
- Whitney Weber

Project Assistants—Students

- Stephanie Raso
- Andrea Snyder
- Jackson Miller
- Cassidy Davis
- Dave Larkins

Exhibit Design

- Alicia Schnell
- Gabrielle Leif
- Chris Forrer
- Casee Clark

Turning Oars

Image 1 features the “business end” of the lathe. A motor, which operates the cutter head that has three blades in it, sits on the center left side. Image 3 shows the location of these blades as they are sharpened. The headstock is visible in the center of Image 1. It holds the blade end of the oar blank. The headstock is made from a piece of ship channel with a pin in the middle that helps secure the blank in place.

Image 2 depicts the tailstock of the lathe. The center of this fits into the opposite end of the oar blank, shown in Image 6. Adjusting the wheel on the back end puts pressure on the back of the oar blank to help hold the material in place. The spacing between the headstock and tailstock is long enough to turn a blank that is 10’-6” long.

Image 4 reveals the pattern of the handle and the round portion of the oar as it moves down to the paddle end. A pin, which is connected to the cutting head, rides along this pattern.

Image 5 shows the “follower arrest.” This machine part goes around the shaft of the oar to help stabilize the material as the cutting head moves down the handle. At a specific point the follower arrest will trip from the carriage in the cutting head gets close to the wider blade of the oar stock.

The oar blade has a pin in the middle that helps secure the blank in place. Image 3 shows the location of these blades as they are sharpened. The headstock is visible in the center of Image 1. It holds the blade end of the oar blank. The headstock is made from a piece of ship channel with a pin in the middle that helps secure the blank in place.

Terry checks and centers the oar blanks. Paul cuts two blanks from Sitka Spruce or old growth Douglas Fir timbers, 2-1/2” thick by 9” or 10” wide and 14’ long.

In the early 1960s, Paul Hanneman and Terry Learned purchased a basic homemade lathe for turning oars. When the partners went to pick it up from the farmer in Tillamook who built it in the 1950s, they found a basic shell and a number of loose parts in boxes. They brought the lathe back to Paul’s shop and reassembled it. It consists of a number of Model T Ford gears, wood pulleys, and leather belts that move forty-four speeds for the lathe.

The oars are now ready for Paul to complete the finishing touches.

Project Collaborators—Faculty

- Brenda DeVore Marshall
- Rhianna Bennett
- Mary Beth Jones
- Tyrone Marshall
- Kathleen Spring
- Daphne Dossett
- Whitney Weber

Project Assistants—Students

- Stephanie Raso
- Andrea Snyder
- Jackson Miller
- Cassidy Davis
- Dave Larkins

Exhibit Design

- Alicia Schnell
- Gabrielle Leif
- Chris Forrer
- Casee Clark

Turning Oars

Image 1 features the “business end” of the lathe. A motor, which operates the cutter head that has three blades in it, sits on the center left side. Image 3 shows the location of these blades as they are sharpened. The headstock is visible in the center of Image 1. It holds the blade end of the oar blank. The headstock is made from a piece of ship channel with a pin in the middle that helps secure the blank in place.

Image 2 depicts the tailstock of the lathe. The center of this fits into the opposite end of the oar blank, shown in Image 6. Adjusting the wheel on the back end puts pressure on the back of the oar blank to help hold the material in place. The spacing between the headstock and tailstock is long enough to turn a blank that is 10’-6” long.

Image 4 reveals the pattern of the handle and the round portion of the oar as it moves down to the paddle end. A pin, which is connected to the cutting head, rides along this pattern.

Image 5 shows the “follower arrest.” This machine part goes around the shaft of the oar to help stabilize the material as the cutting head moves down the handle. At a specific point the follower arrest will trip from the carriage in the cutting head gets close to the wider blade of the oar stock.

The oar blade has a pin in the middle that helps secure the blank in place. Image 3 shows the location of these blades as they are sharpened. The headstock is visible in the center of Image 1. It holds the blade end of the oar blank. The headstock is made from a piece of ship channel with a pin in the middle that helps secure the blank in place.

Terry checks and centers the oar blanks. Paul cuts two blanks from Sitka Spruce or old growth Douglas Fir timbers, 2-1/2” thick by 9” or 10” wide and 14’ long.

In the early 1960s, Paul Hanneman and Terry Learned purchased a basic homemade lathe for turning oars. When the partners went to pick it up from the farmer in Tillamook who built it in the 1950s, they found a basic shell and a number of loose parts in boxes. They brought the lathe back to Paul’s shop and reassembled it. It consists of a number of Model T Ford gears, wood pulleys, and leather belts that move forty-four speeds for the lathe.

The oars are now ready for Paul to complete the finishing touches.

Project Collaborators—Faculty

- Brenda DeVore Marshall
- Rhianna Bennett
- Mary Beth Jones
- Tyrone Marshall
- Kathleen Spring
- Daphne Dossett
- Whitney Weber

Project Assistants—Students

- Stephanie Raso
- Andrea Snyder
- Jackson Miller
- Cassidy Davis
- Dave Larkins

Exhibit Design

- Alicia Schnell
- Gabrielle Leif
- Chris Forrer
- Casee Clark

Turning Oars

Image 1 features the “business end” of the lathe. A motor, which operates the cutter head that has three blades in it, sits on the center left side. Image 3 shows the location of these blades as they are sharpened. The headstock is visible in the center of Image 1. It holds the blade end of the oar blank. The headstock is made from a piece of ship channel with a pin in the middle that helps secure the blank in place.

Image 2 depicts the tailstock of the lathe. The center of this fits into the opposite end of the oar blank, shown in Image 6. Adjusting the wheel on the back end puts pressure on the back of the oar blank to help hold the material in place. The spacing between the headstock and tailstock is long enough to turn a blank that is 10’-6” long.

Image 4 reveals the pattern of the handle and the round portion of the oar as it moves down to the paddle end. A pin, which is connected to the cutting head, rides along this pattern.

Image 5 shows the “follower arrest.” This machine part goes around the shaft of the oar to help stabilize the material as the cutting head moves down the handle. At a specific point the follower arrest will trip from the carriage in the cutting head gets close to the wider blade of the oar stock.

The oar blade has a pin in the middle that helps secure the blank in place. Image 3 shows the location of these blades as they are sharpened. The headstock is visible in the center of Image 1. It holds the blade end of the oar blank. The headstock is made from a piece of ship channel with a pin in the middle that helps secure the blank in place.

Terry checks and centers the oar blanks. Paul cuts two blanks from Sitka Spruce or old growth Douglas Fir timbers, 2-1/2” thick by 9” or 10” wide and 14’ long.

In the early 1960s, Paul Hanneman and Terry Learned purchased a basic homemade lathe for turning oars. When the partners went to pick it up from the farmer in Tillamook who built it in the 1950s, they found a basic shell and a number of loose parts in boxes. They brought the lathe back to Paul’s shop and reassembled it. It consists of a number of Model T Ford gears, wood pulleys, and leather belts that move forty-four speeds for the lathe.

The oars are now ready for Paul to complete the finishing touches.