The electronic properties of low-cost, thin-film solar cells are complicated by the non-ideal nature of the semiconductor layers. Typically, the fundamental electronic properties of such materials are evaluated using current-voltage and capacitance-voltage measurements. However, in these devices, it is common for the back contact to be non-ohmic. We are exploring the impact of such a back contact on the outcome of standard capacitance-based characterization techniques. We compare computer models of capacitance response with measurements of simple model electronic circuits, and of solar cell devices.

Differential Capacitance: \[C = \frac{\partial Q}{\partial V} = \epsilon \frac{A}{W} \] (1)

Capacitance-Voltage measurements: Ideal C-V data provides:
- Doping Densities.
- Depletion Width.
- \(V_B \) of cell.

Forward Bias: \(V_n^+ - n^- \)

Neutral: \(V_n^+ - 0 \) V

Reverse Bias: \(V_n^- + n^+ \)

After seeing the theoretical capacitance with an ohmic contact, it is interesting to analyze the effect a bad back contact has upon solar cells. A bad back contact resists the flow of current from the cell.

Acknowledgements

We would like to thank Linfield Research Institute for providing the equipment and facilities necessary for this research and the Linfield Student Faculty Collaborative Research fund for funding.

References