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We calibrate the secondary electron signal from a standard scanning electron microscope to

voltage, yielding an image of the surface or near-surface potential. Data on both atomically abrupt

heterojunction GaInP/GaAs and diffused homojunction Si solar cell devices clearly show the

expected variation in potential with position and applied bias, giving depletion widths and locating

metallurgical junctions to an accuracy better than 10 nm. In some images, distortion near the p-n

junction is observed, seemingly consistent with the effects of lateral electric fields (patch fields).

Reducing the tube bias removes this distortion. This approach results in rapid and straightforward

collection of near-surface potential data using a standard scanning electron microscope. VC 2012
American Institute of Physics. [doi:10.1063/1.3684556]

Secondary electron (SE) contrast in the scanning elec-

tron microscope (SEM) is known to originate from many dif-

ferent effects, including differing SE yield of materials,

crystal orientation, and voltage.1 Voltage contrast allows the

otherwise identical p and n sides of p-n junctions to be dis-

tinguished.2 A SE image across a p-n junction can be quickly

and easily collected, and the line section across the junction,

illustrated in Fig. 1(a), appears qualitatively similar to the

expected variation in surface potential. This has been dis-

cussed extensively in the literature, with a goal of imaging

relative doping levels in semiconductor materials, resolving

small differently doped features, and locating p-n junctions.3

Data are often analysed using the relative contrast, C,

C ¼ ðS� SrefÞ=Sref ; (1)

where S is the raw SE signal minus any dark background sig-

nal, typically on the p-side of a p-n junction, and Sref is the

reference signal minus the dark background, typically on the

n-side of the junction.

Experimental results in the literature show the useful-

ness of voltage contrast for qualitative studies, but a more

detailed understanding is needed to quantitatively verify

image features. As a cautionary example, scanning capaci-

tance microscopy images show very clear apparent junction

locations, which can be misleading.4

Our simple nþ-p devices allow for measurements both in

the vicinity of the junction and in a field-free region away from

the junction, as the sample bias and microscope parameters are

varied. Based on these results, we have developed an approach

for calibrating C to potential (in V) for surfaces which are with-

out other sources of SE contrast, such as roughness or strain.

These data help clarify the physical mechanism of the contrast

and quantify the relationship between contrast and potential.

Although experimental details vary, the consistency of

results in the literature, over several decades of effort, is

quite remarkable. This suggests that voltage contrast depends

more on the physical nature of the sample than on the spe-

cific experimental equipment used to image it. Recent theo-

retical work has focused on possible mechanisms for the

apparent influence of surface potential on SE collection.5–7

These include “patch” electric fields above the sample (PF),

which are directed laterally, in the xy plane,8 as well as the

effective electron affinity vE (EEA).9 The EEA is the poten-

tial difference between an excited SE just below the sample

surface and an equipotential plane, corresponding to a high

probability of SE detection, which is determined by the elec-

tron optics. Indeed, the PF and EEA effects are intimately

interconnected, as one would not arise without the other.

The effect of EEA on SE collection has two parts. First,

the kinetic energy of SEs just below the sample surface must

be greater than vE such that those electrons will be collected

by the detector. Second, diffraction effects occur due to the

change in kinetic energy of the SE upon leaving the surface.

The electron optics of the microscope have a large, but still

limited, collection angle, resulting in a diffraction compo-

nent of the SE collection efficiency, which depends on the

value of vE.5

In addition, z-direction electric fields arise just below the

sample surface, caused by surface band bending (SBB). These

can either help propel low energy SEs out of the surface or,

alternatively, cause them to be trapped within the sample.6

To better understand the relationship between surface

potential and SE contrast, we have studied two very different

devices, which are both working solar cells.

The heterojunction device (“III-V”) is epitaxially grown

on a GaAs wafer, shown in Fig. 1(a). At its core are a 1.06 lm

p-doped GaAs absorber (1.5� 1017 cm–3) and 90 nm nþ

GaInP emitter (1.5� 1018 cm–3). Layer thicknesses are deter-

mined by calibrated deposition rate and times for thin layers,

with an accuracy of about 610 nm, and by SIMS for the

thicker GaAs layers. The window/emitter interface is used as

a reference to align the data at x¼ 0 nm, where the positive x
direction extends from the emitter into the absorber.

a)Author to whom correspondence should be addressed. Electronic mail:

jheath@linfield.edu.
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In the homojunction device (“Si-U”), the emitter is dif-

fused into a multicrystalline Si wafer. The SIMS profile of

Si-U10 shows an exponential drop-off in the diffused P dop-

ing, with the metallurgical junction located at xm¼ 0.46

6 0.01 lm from the wafer surface and a bulk B doping of

4� 1016 cm–3. The Si wafers are topped with a SiNx antire-

flective coating, and in the data shown here, the Si/SiNx inter-

face is used as a reference, x¼ 0.

The SE data were collected on an FEI Nova 630 SEM at

2 keV beam voltage, 32 pA beam current, and 4 mm working

distance with the immersion lens and in the absence of light.

The measured (raw) SE signal varies linearly with beam cur-

rent. Each sample was freshly cleaved immediately before

being placed in the SEM for measurement. Reported data

represents the initial exposure of that sample location to the

electron beam. This keeps carbon contamination minimal

and consistent. For Si-U, smooth areas within crystalline

grains were chosen for analysis.

The sample bias was controlled using a custom sample

stage and an external voltage supply. In most cases, a bias

–Va was applied to the nþ emitter and the p side of the device

was at microscope ground. In other tests, the bias was

reversed. We also shorted the p and n sides of the sample to-

gether and floated them at a bias, Vfloat, relative to the micro-

scope ground, to study the impact of small amounts of bias

on the SE optics. For applied bias on the order of a few V,

the influence of Vfloat on C was negligible. For each series of

data, other microscope settings were held constant. Consist-

ent with reports in the literature,11 C varies linearly with Va,

as shown in Figs. 1(b) and 1(c).

The calibration is based on signals Sp and Sn measured

outside the depletion region of the p and nþ layers, respec-

tively, as a function of Va. A linear fit to the bulk contrast

gives,

C0ðVaÞ ¼ ðSp � SnÞ=Sn ¼ mVa þ b; (2)

as illustrated in Fig. 1(c). The slope, m, and intercept, b, can

then be used to calibrate any raw signal S by replacing Va in

Eq. (2) with the unknown, calibrated voltage –Scal, where

Scal represents electron potential,

ScalðVÞ ¼ �
S� Sn

mSn
� b

m

� �
: (3)

Note these are relative voltages such that Sp-cal(0) = 0. The

apparent built-in potential, Vbi-s, is obtained from the inter-

cept at C0¼ 0: Vbi-s¼ –b/m.

The resulting calibrated line scan is then compared with

a simple 1D model of potential variation across the junction

created using PC1D software. The model has no free param-

eters. In both samples, over many experimental repetitions,

the quadratic variation of Scal with distance from the junction

corresponds with the model and changes with bias as

expected illustrated in Figs. 2 and 3. This indicates that the

image is appropriately calibrated.

A spatial derivative of the surface potential, dScal/dx,

should be proportional to the x component of electric field,

peaking at the metallurgical junction. Then, each metallurgi-

cal junction can be clearly identified from the SE image

(Figs. 1–3). These results agree closely with the known junc-

tion locations. The lateral extent of the electric field within

the nþ-p junction region corresponds to the depletion width,

W. The change in W with Va allows the film doping density

to be verified from such images.

For this 1D model to predict the surface potential pre-

sumes that Va is applied identically at the surface and in the

bulk and that the effective surface doping, influencing the

band bending, corresponds to that in the bulk. The close

agreement between model and data, especially in Si-U,

which has a large density of surface states in the bandgap,

suggests that voltage contrast does not strictly yield the sur-

face potential, but rather a near-surface potential.

These data provide interesting input to the discussion of

SE contrast. The SBB cannot be a primary mechanism for

the contrast in these data. Outside the depletion region, the

SBB does not depend on Va; yet, the impact of Va on Sp is

spatially uniform and extends, for Si-U, throughout the wa-

fer, 0.5 mm from the junction.

FIG. 1. (Color online) (a) SE image of the III-V sample with line scans of

the raw signal S(x) and its spatial derivative overlaid. Peaks in dS/dx occur

at each metallurgical junction. (b) SE images of the III-V sample with Va

varying from 0 to –2.4 V in –0.6 V increments. Only the GaInP (nþ) and

GaAs (p) layers are shown for clarity. (c) Linear variation of contrast with

applied bias in both samples.

FIG. 2. (Color online) Calibrated SE data (solid line) for Si-U and III-V

showing close agreement with the modeled electron potential (dashed line).

Curves have been shifted vertically to align. For Si-U, as discussed in the

text data collected at Va¼ –0.6 V is compared to the model for Va¼ 0 V.
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The PF also do not appear to be the primary mechanism

for contrast in these data. The spatial extent of the PF predicted

by models is more consistent with distortions observed near

the junction, such as those illustrated in Fig. 3.7 The distortion,

observed as a discrepancy between Scal and the modeled poten-

tial, becomes stronger and extends further from the junction

with more negative values of Va. This is as expected for PF,

which depend on the strength of the lateral electric field. The

distortion is reduced by forward bias and in samples with

lower Vbi-s, such as Si-U. Despite this distortion, the derivative

dScal/dx clearly shows both the metallurgical junction location

and the dependence of W on Va, as shown in Fig. 3(b).

This distortion is removed by collecting data at a low

tube bias Vt (labeled as “grid bias” in the FEI Nova NanoSEM

software), as shown in Fig. 3. The tube bias creates an electric

field perpendicular to the sample surface, extracting the SEs;

thus, the total SE signal is reduced as tube bias is lowered. At

lower Vt, changes in Va would create a larger relative change

in vE. The reduction of Vt also likely changes the angular and

energy distribution of SEs collected. All of these could affect

the relative influence of patch fields on the signal.

Another interesting result relates to Vbi-s. We expect

SBB to reduce the measured Vbi-s from the bulk Vbi yielded

by the model. For the Si-U data shown in Fig. 2, we find Vbi-

s¼ 0.3 V. This suggests 0.6 V of SBB, consistent with

expected values for Si.7 For this reason, the model with

Va¼ 0 V is compared to experimental data collected at

Va¼ –0.6 V in Fig. 2. We were unable to independently mea-

sure Vbi-s in Si-U using scanning Kelvin probe microscopy

(SKPM), due to the large scale roughness of the sample.

For III-V, we find the difference Vbi-Vbi-s is less than

0.1 V, so, in Fig. 2, the PC1D model and experimental data

are both shown for the same bias, Va¼ 0 V. The SBB meas-

ured using SKPM is about 0.6 V. A plausible explanation is

given by the different degrees of surface Fermi level (EF) pin-

ning on the two materials. Air absorbates on cleaved Si are

expected to generate dense surface states and strongly pin the

EF, whereas surface defects upon cleaving would weakly pin

the EF on the GaAs cross-sectional surface.12 Unpinning of

the surface EF or flattening of SBB would occur on GaAs by

the diffusion of excess carriers generated by the high-energy

electron beam, whereas the EF on Si would be still pinned at a

similar electron exposure. We must in general also consider

differing SE yields, as well as the exact depth below the sur-

face at which the contrast is determined, and whether oxides

and carbides may play an important role differentiating these

two materials’ surfaces.

In summary, we have studied the voltage contrast effect

in the SEM using two very different devices: a diffused

homojunction and an abrupt heterojunction. These simple

devices allow for measurements both in the vicinity of the

junction and outside the depletion region. By studying the

same sample at varying applied bias, the SE signal can be

calibrated. Then, the near-surface potential and related infor-

mation, like depletion width and junction location, can be

accurately measured with a standard SEM. This experimen-

tal approach also refines our understanding of the underlying

physics explaining voltage contrast.
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