Submission Title

Alloy Au/Ag Nanoparticles Introduced to S. Cerevisiae Cells In Vitro

Subject Area

Chemistry

Description

Monodisperse silver and gold alloy nanoparticles of controlled composition and size were synthesized for the development of a potential drug delivery system. The seeded growth of the alloy nanoparticles through a co-reduction of gold and silver salts, using the Turkevich approach, was used for synthesizing the nanoparticles. The size of the nanoparticles was characterized using a NanoSight LM10 HS and their composition with a UV-Vis spectrophotometer. These alloys and earlier gold nanoparticles of varying sizes were introduced to live wild-type S. cerevisiae cells in their exponential growth phase, and the absorbance of the cells after incubation with nanoparticles was measured with a UV-Vis spectrophotometer. Absorbance data suggests that the number of nanoparticles taken up by the yeast cells is negligible as no peak was observed in the yeast cells after they had been washed and centrifuged to discard excess alloy nanoparticles. Further research is necessary to see if the addition of antibodies increases the number of nanoparticles attached to the yeast cells, future coating with lipids and a SERS tag, and maybe even attaching a therapeutic agent.

This document is currently not available here.

Share

Import Event to Google Calendar

COinS
 
May 18th, 12:00 AM May 18th, 12:00 AM

Alloy Au/Ag Nanoparticles Introduced to S. Cerevisiae Cells In Vitro

Monodisperse silver and gold alloy nanoparticles of controlled composition and size were synthesized for the development of a potential drug delivery system. The seeded growth of the alloy nanoparticles through a co-reduction of gold and silver salts, using the Turkevich approach, was used for synthesizing the nanoparticles. The size of the nanoparticles was characterized using a NanoSight LM10 HS and their composition with a UV-Vis spectrophotometer. These alloys and earlier gold nanoparticles of varying sizes were introduced to live wild-type S. cerevisiae cells in their exponential growth phase, and the absorbance of the cells after incubation with nanoparticles was measured with a UV-Vis spectrophotometer. Absorbance data suggests that the number of nanoparticles taken up by the yeast cells is negligible as no peak was observed in the yeast cells after they had been washed and centrifuged to discard excess alloy nanoparticles. Further research is necessary to see if the addition of antibodies increases the number of nanoparticles attached to the yeast cells, future coating with lipids and a SERS tag, and maybe even attaching a therapeutic agent.