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HIGHER DIMENSIONAL LATTICE CHAINS AND DELANNOY
NUMBERS

JOHN S. CAUGHMAN, CHARLES L. DUNN, NANCY ANN NEUDAUER,
AND COLIN L. STARR

Abstract. Fix nonnegative integers n1, . . . , nd, and let L denote the lattice
of points (a1, . . . , ad) ∈ Zd that satisfy 0 ≤ ai ≤ ni for 1 ≤ i ≤ d. Let L
be partially ordered by the usual dominance ordering. In this paper we use
elementary combinatorial arguments to derive new expressions for the number
of chains and the number of Delannoy paths in L. Setting ni = n (for all i) in
these expressions yields a new proof of a recent result of Duichi and Sulanke
[9] relating the total number of chains to the central Delannoy numbers. We
also give a novel derivation of the generating functions for these numbers in
arbitrary dimension.

1. Introduction

Lattice chains and Delannoy paths have commanded a great deal of attention
historically, and have enjoyed a surge of interest in recent decades. Popular expo-
sitions of the subject, like Comtet [8] and Stanley [15], have certainly given further
impetus to their study, while also providing powerful tools for their analysis. At
the same time, interest has also been generated with the appearance of connections
to other topics, as chains have been studied in relation to simplicial complexes,
Legendre polynomials, formal languages, ballot numbers, and probability theory,
to name only a few [11, 6, 14, 4, 3]. The interested reader can find even more on
these topics in the survey by Banderier and Schwer [3], with over 75 bibliographic
references.

A particular charm of the topic is the interplay between counting arguments
and generating function techniques. In Stanley [15], a problem involving lattice
chains and Delannoy paths in two dimensions was used to illustrate a technique for
extracting the diagonal of a generating function. Specifically, in the special case
when the 2-dimensional lattice is square, the number of chains exceeds the number
of Delannoy paths by a factor of an appropriate power of 2. The question was then
posed to find a combinatorial proof of the same result.

This challenge was met by Sulanke in [16], who established a bijective correspon-
dence by composing a sequence of intermediate bijections between six different step
sets in the 2-dimensional lattice for the central (diagonal) case. More recently, his
article with Duchi [9] generalizes the result to the central case in arbitrary dimen-
sion, again by means of a composition of explicit bijections. In the present paper,
we offer elementary counting techniques that yield a number of new expressions,
both for chains and Delannoy paths in the general (not necessarily central) lattice,
in any dimension. The expressions for the chains and for the Delannoy numbers are
strikingly similar to each other, and upon an appropriate subtitution, the central
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lattice is obtained as a special case, yielding an alternate proof of Sulanke’s theorem
in any dimension.

The chain numbers and the Delannoy numbers satisfy similar cross-dimensional
recurrence relations, and we exploit this recursive structure to prove a result which
generalizes both recurrences and offers a new means to derive their generating
functions easily and uniformly in any dimension.

The paper is organized as follows. Section 2 fixes notation and describes our
results on lattice chains, including k-chains, reducible chains, and finally the total
number of chains. In Section 3, we consider Delannoy paths, first with k steps,
and then the general case, obtaining the desired expression related to the number
of chains. Finally, in Section 4, we introduce the class of a-recurrent sequences of
functions – a class that includes both the chain numbers and the Delannoy numbers
as special cases – and we offer an explicit expression for their generating functions
in any dimension.

2. Results on Lattice chains

Throughout this paper, N denotes the nonnegative integers and P the positive
integers. Fix d ∈ P and n ∈ Nd, where n = (n1, . . . , nd)

T . Let L(n) denote the
lattice of integer points (a1, . . . , ad)T ∈ Nd satisfying ai ≤ ni for 1 ≤ i ≤ d.

Recall L(n) is partially ordered by the dominance relation, defined as follows.
Given a,b ∈ L(n) with a = (a1, . . . , ad)

T and b = (b1, . . . , bd)
T , we say a � b

whenever ai ≤ bi for each i (1 ≤ i ≤ d). We write a ≺ b whenever a � b and
a 6= b.

Define the weight of an element a = (a1, . . . , ad)
T ∈ L(n) by wt(a) = a1+· · ·+ad.

We define the truncation of a to be the (d− 1)-tuple a′ = (a1, . . . , ad−1)
T .

2.1. Counting k-chains and some variations. By a chain in L(n) we mean a
subset of L(n) that is totally ordered by �. A k-chain is a chain with k elements.
Let C(n) denote the set of chains in L(n), and for each integer k, let Ck(n) denote
the set of k-chains in L(n). In this section we study expressions for |Ck(n)| and
|C(n)|.

Expressions for |Ck(n)| are not difficult to derive, and have been computed in
several places [10, 13] for the special case ni = 1 for all i, and, in [7], for the general
case. Each of these derivations proceeds either by solving an appropriate recurrence
or through the use of generating functions. In [5], a direct counting argument was
given for |Ck(n)| using the principle of inclusion/exclusion.

Lemma 1. [5],[7] Fix n ∈ Nd, where n = (n1, . . . , nd)
T and for each k ∈ N, let

Ck(n) denote the set of k-chains in the corresponding lattice L(n), and C̃k(n) the
set of chains in Ck(n) that contain the maximum element n. Then the following
hold:

(i) The maximum length of a chain in L(n) is given by

kmax = wt(n) + 1.

(ii) For any integer k (1 ≤ k ≤ kmax), the number of k-chains in L(n) is given
by

|Ck(n)| =
k−1∑
r=0

(−1)r
(
k − 1

r

) d∏
i=1

(
ni + k − r

ni

)
.
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(iii) For any integer k (1 ≤ k ≤ kmax), the number of k-chains in L(n) that
contain n is given by

|C̃k(n)| =
k∑
i=1

(−1)i+1|Ck−i(n)|.

Proof. (i). If a and b are elements of L(n) such that a � b, then 0 ≤ wt(a) <
wt(b) ≤ wt(n). Since the weight of any element must be an integer, a chain can
have at most kmax = wt(n)+ 1 elements. Conversely, a chain with length kmax can
easily be defined inductively as follows. We simply set a1 = 0, and, given any ai
with 1 ≤ i ≤ kmax − 1, we define ai+1 by adding 1 to any coordinate aij of ai for
which aij < nj .
(ii). An elementary proof using inclusion/exclusion is given in [5].
(iii). Note that C0(n) = 1 and C̃0(n) = 0. For k ≥ 1, each k-chain containing n
corresponds to a unique (k− 1)-chain that does not contain n (and conversely). So
|C̃k(n)| = |Ck−1(n) \ C̃k−1(n)| = |Ck−1(n)| − |C̃k−1(n)|. The result now follows by
a simple induction. �

2.2. Counting reducible chains. We say a chain ξ is reducible if the truncations
of its elements are pairwise distinct. Recall that chains are not defined as sequences,
but as subsets of the lattice, so a chain cannot contain repeated elements. With
this in mind, we could equivalently define a k-chain ξ in L(n) to be reducible iff
the set ξ′, formed by truncating the elements of ξ, remains a k-chain in L(n′). For
example, let n = (2, 4, 3, 4)T and suppose ξ1 and ξ2 denote the 3-chains

ξ1 :


0
3
2
1

 ≺


0
3
2
2

 ≺


1
3
3
3

 and ξ2 :


0
2
0
1

 ≺


1
3
1
1

 ≺


2
3
2
2

 .

Then ξ1 is not reducible, since the first two elements have identical truncations.
Equivalently, we could say that ξ1 is not reducible since ξ′1 is only a 2-chain in
L(n′), as shown below. On the other hand, ξ2 is reducible, since ξ′2 is still a 3-
chain.

ξ′1 :

 0
3
2

 ≺
 1

3
3

 and ξ′2 :

 0
2
0

 ≺
 1

3
1

 ≺
 2

3
2


The next result is the analog of Lemma 1 for reducible chains.

Lemma 2. With the notation of Lemma 1, let Cred(n) denote the set of reducible
chains in L(n), and let C̃red(n) denote the set of reducible chains that contain n.
Then the following hold.

(i) The maximum length of a chain in Cred(n) is

k′max := wt(n′) + 1.

(ii) The number of reducible chains in L(n) is

|Cred(n)| =
k′max∑
k=0

(
nd + k

nd

)
|Ck(n′)|.
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(iii) The number of reducible chains in L(n) that contain n is

|C̃red(n)| =
k′max∑
k=1

(
nd + k − 1

nd

)
|C̃k(n′)|.

Proof. (i). By truncating the d-coordinates of each element, every reducible k-
chain ξ in L(n) corresponds to a unique k-chain ξ′ in L(n′). Therefore, k ≤ k′max

by Lemma 1(i).

(ii). Fix an integer k (1 ≤ k ≤ k′max) and let ξ be any reducible k-chain. Truncating
the d-coordinates of the elements of ξ gives a unique k-chain ξ′ in L(n′), and the
d-coordinates themselves form a non-decreasing sequence σ of integers between 0
and nd (inclusive). Conversely, such a sequence and a k-chain in L(n′) correspond
to a unique reducible chain in L(n). The number of such sequences is

(
nd+k
nd

)
.

Multiplying by |Ck(n′)| and summing over k, we obtain the result.

(iii). As in (ii) above, each ξ in C̃red
k (n) corresponds to a unique ξ′ in C̃k(n

′)
and a non-decreasing sequence σ of integers between 0 and nd (inclusive), where σ
contains nd at least once. The number of such sequences is

(
nd+k−1
nd

)
. Multiplying

by |C̃k(n′)| and summing over k, we obtain the result. �

Corollary 1. With the notation of Lemma 2, the number of reducible chains in
L(n) that contain n is given by

|C̃red(n)| =
k′max∑
k=1

k∑
i=1

(−1)i+1

(
nd + k − 1

nd

)
|Ck−i(n′)|.

Proof. Immediate by Lemma 1(iii) and Lemma 2(iii). �

By Lemma 1(ii), we can evaluate the term |Ck−i(n′)| in the expression in Corol-
lary 1 above to obtain a triple sum. As the next corollary shows, however, this
reduces to a double sum.

Corollary 2. With the notation of Lemma 2, the number of reducible chains in
L(n) that contain n is given by

|C̃red(n)| =
k′max∑
k=1

k∑
i=1

(−1)i+k
(
k − 1

i− 1

)(
nd + k − 1

nd

) d−1∏
j=1

(
nj + i− 1

nj

)
.

Proof. Consider the expression for |C̃red(n)| given in Corollary 1 above. Recall that
|C0(n)| = 1, and for i < k we can evaluate |Ck−i(n)| using Lemma 1(ii) to obtain

(1) |C̃red(n)| =
k′max∑
k=1

(
nd + k − 1

nd

)[
(−1)k+1

+

k−1∑
i=1

k−i−1∑
r=0

(−1)r+i+1

(
k − i− 1

r

) d−1∏
j=1

(
nj + k − i− r

nj

)]
.
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With the change of variables r = k − i− t, this simplifies to

(2) |C̃red(n)| =
k′max∑
k=1

(
nd + k − 1

nd

)
(−1)k+1

1 + k−1∑
i=1

k−i∑
t=1

(−1)t
(
k − i− 1

t− 1

) d−1∏
j=1

(
nj + t

nj

) .
Interchanging the order of summation over i and t, this is equivalent to

(3) |C̃red(n)| =
k′max∑
k=1

(
nd + k − 1

nd

)
(−1)k+1

1 + k−1∑
t=1

(−1)t
d−1∏
j=1

(
nj + t

nj

) k−t∑
i=1

(
k − i− 1

t− 1

) .
A common binomial identity [1, Thm. 1.8] states that

∑k−t
i=1

(
k−i−1
t−1

)
=
(
k−1
t

)
.

Applying this identity and then substituting t = i − 1, the bracketed expression
simplifies to give the desired result. �

2.3. The total number of chains. Keeping with the notation of Lemma 2, we let
C̃(n) denote the set of chains in L(n) that contain n. It is convenient to count |C̃(n)|
rather than |C(n)| directly. The difference is minimal, however, since removing n

from each chain in C̃(n) gives a bijection between C̃(n) and C(n) \ C̃(n), so that

(4) |C(n)| = 2 · |C̃(n)|.

Let P denote the power set of {0, 1, . . . , nd − 1}, and recall that C̃red(n) denotes
the set of reducible chains in L(n) that contain n. In this section we establish a
bijection φ between C̃(n) and P × C̃red(n).

Roughly speaking, φ can be described as follows. Given a chain ξ that contains
n, it fails to be reducible if the truncations of its elements are not distinct. The
function φ removes from ξ any elements whose truncations are repeated by a later
element in ξ. Doing so produces a reducible chain ξred. The d-coordinates of the
elements removed are recorded in a set Aξ. The output of φ is the pair (Aξ, ξred).

More formally, we have the following.

Definition 1. Suppose a chain ξ in C̃(n) has k elements a1 ≺ · · · ≺ ak, where
ai = (ai1, . . . , aid)

T for each i (1 ≤ i ≤ k). We define

Aξ = {aid |a′i = a′i+1}, and ξred = ξ \ {ai |a′i = a′i+1},
and we let φ(ξ) denote the pair (Aξ, ξ

red). 2

To illustrate this definition, let n = (3, 3, 3)T and suppose ξ denotes the following
8-chain in C̃(n):

a1 ≺ a2 ≺ a3 ≺ a4 ≺ a5 ≺ a6 ≺ a7 ≺ a8

(5)

ξ :

 1
1
0

 ≺
 2

1
0

 ≺
 2

1
1

 ≺
 2

1
2

 ≺
 2

2
2

 ≺
 3

2
2

 ≺
 3

2
3

 ≺
 3

3
3

 .

Notice that a′2 = a′3 = a′4 =

(
2
1

)
and a′6 = a′7 =

(
3
2

)
. The reducible chain

ξred is formed by removing a2 and a3 (keeping a4), and removing a6 (keeping a7).
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For each of the elements removed, their last coordinates (3rd coordinates in this
case) are recorded in the set Aξ. Then ξred is a reducible 5-chain in C̃red(n), the
set Aξ is a subset of {0, 1, 2}, and φ(ξ) denotes the pair (Aξ, ξred) below:
(6)

Aξ = {0, 1, 2} and ξred :

 1
1
0

 ≺
 2

1
2

 ≺
 2

2
2

 ≺
 3

2
3

 ≺
 3

3
3

 .

Observe that φ(ξ) ∈ P × C̃red(n).
Next we describe how the original chain ξ can be recovered from the pair

(Aξ, ξ
red). Given the information in line (6) above, we simply must reinsert into

ξred the missing elements, one belonging to each member of Aξ. Each x in Aξ is
the d-coordinate xd of a point x that is to be inserted immediately to the left of

the first y in ξred for which xd < yd. In our case, 0 and 1 belong left of

 2
1
2

,

while 2 belongs left of

 3
2
3

:

 1
1
0

 ≺


0

 ≺


1

 ≺
 2

1
2

 ≺
 2

2
2

 ≺


2

 ≺
 3

2
3

 ≺
 3

3
3

 .

Observe that for each x in Aξ, such a y is guaranteed to exist in ξred by the fact
that every element of Aξ is < nd, while n belongs to ξred. Indeed, this motivates
our choice to work with C̃(n) rather than C(n). To complete the recovery of ξ,
note that the remainder of each new point x is determined by the condition that

x′ = y′. In our case, 0 and 1 are topped by
(

2
1

)
, while 2 is topped by

(
3
2

)
.

Doing so produces the original chain ξ, given in (5).
The next three lemmas establish the relevant properties of φ.

Lemma 3. With the above notation, φ is a function from C̃(n) to P × C̃red(n).

Proof. For ξ ∈ C̃(n), recall φ(ξ) = (Aξ, ξ
red). If x ∈ Aξ, then x = aid for some

i, where a′i = a′i+1. But ai ≺ ai+1, so aid < ai+1,d. Thus every element of Aξ is
strictly less than nd, and Aξ ∈ P. To show ξred ∈ C̃red(n), note that ξred ⊆ ξ, so
ξred is totally ordered by ≺. And n ∈ ξ since ξ ∈ C̃(n), while n 6∈ {ai |a′i = a′i+1}
so n ∈ ξred. It remains to show ξred is reducible. Suppose there were x ≺ y in ξred
such that x′ = y′. Then x = ai and y = aj for some i < j. But a′i � a′i+1 � a′j so
a′i = a′i+1 and thus ai 6∈ ξred, a contradiction. It follows that ξred ∈ C̃red(n). �

Lemma 4. With the above notation, φ is injective.

Proof. Let ξ1, ξ2 be in C̃(n) and suppose φ(ξ1) = φ(ξ2). Then ξred1 = ξred2 , and to
prove ξ1 = ξ2, it remains to show that ξ1 \ ξred1 = ξ2 \ ξred2 . We accomplish this by
proving that for any chain ξ in C̃(n), each element x ∈ ξ \ ξred corresponds to a
unique element xd ∈ Aξ, and that, in fact, x can be explicitly constructed from the
element xd ∈ Aξ and the chain ξred. Performing this construction for each element
of Aξ then yields the entire set ξ \ ξred. To describe the construction, let x be any
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element of ξ \ ξred, and let k denote the length of ξ. Then x = ai for some i where
a′i = a′i+1 and xd = aid ∈ Aξ. Let t = max{j |a′i = a′j}. Then t ≥ i + 1 and
a′i = a′i+1 = · · · = a′t. Also, either t < k and a′t 6= a′t+1 or else t = k and at = n. In
either case, at ∈ ξred, and ai, . . . ,at−1 6∈ ξred. So at = min{y |y ∈ ξred and x ≺ y}.
Observe that since x ≺ at and x′ = a′t, it must be the case that xd < atd. It follows
that at = min{y |y ∈ ξred and xd < yd}. Since x′ = a′t and has d-coordinate
xd, we have now shown that x is completely determined by the element xd in Aξ
and the chain ξred. It follows that ξ is determined by the pair (Aξ, ξ

red), so φ is
injective. �

Lemma 5. With the above notation, φ is surjective.

Proof. To see that φ is surjective, we associate a chain in C̃(n) with each pair
(A, ζ) in P × C̃red(n). Let (A, ζ) be such a pair and suppose ζ has t elements
b1 ≺ · · · ≺ bt where bi = (bi1, . . . , bid)

T for each i (1 ≤ i ≤ t). For each x in
A, define m := min{j |x < bjd} and set bx = (bm1, . . . , bm(d−1), x)

T in L(n). In
other words, we define bx by putting b′x := b′m and setting the d-coordinate of bx
equal to x. Then the chain in C̃(n) that we associate with the pair (A, ζ) is simply
ξ(A,ζ) := ζ ∪ {bx |x ∈ A}. It is easy to check that φ(ξ(A,ζ)) = (A, ζ) as desired. �

Corollary 3. With the above notation, the map φ is a bijection between C̃(n) and
P × C̃red(n).

Proof. Immediate from Lemmas 3-5. �

Theorem 1. Fix n ∈ Nd and let C(n) denote the set of chains in L(n). Then

|C(n)| = 2nd+1

k′max∑
k=1

k∑
i=1

(−1)i+k
(
k − 1

i− 1

)(
nd + k − 1

nd

) d−1∏
j=1

(
nj + i− 1

nj

)
.

Proof. By equation (4) and Corollary 3, we have |C(n)| = 2 · |P × C̃red(n)| =
2 · |P| · |C̃red(n)|. Since |P| = 2nd , the result follows by Corollary 2. �

3. Results on Delannoy numbers and the Theorem of Sulanke

The set D = D(n) of (generalized) Delannoy paths contains precisely those
chains in L(n) that contain both the origin 0 = (0, . . . , 0)T and n = (n1, . . . , nd)

T

and whose successive elements differ by at most one in each coordinate. In other
words, the elements of D(n) correspond to walks from 0 to n in which only positive
steps from the d-dimensional unit hypercube are allowed. This follows [12]. The
cardinalities |D(n)| are referred to as (generalized) Delannoy numbers. For more
about generalizations of the Delannoy numbers, we refer the reader to [2, 12].

When all the ni share a common value n, we have n = (n, . . . , n)T and we refer
to the cardinalities |D(n)| as the (d-dimensional) central Delannoy numbers. In
this section we use an inclusion/exclusion argument to find an expression for the
general Delannoy numbers which specializes to a useful expression for the central
Delannoy numbers in Theorem 4.
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3.1. Delannoy paths with k steps. It is common to refer to the size of a Delan-
noy path by the number of steps it contains, rather than the number of elements
it has as a chain in L(n). In other words, suppose a chain ξ in D(n) has elements

a0 ≺ a1 ≺ · · · ≺ ak.

Then we say ξ has k steps. (Notice that ξ has k + 1 elements, and hence, length
k + 1 as a chain). The set of all k-step Delannoy paths is denoted by Dk(n).

Due to symmetry, the ordering of the dimensions in L is often irrelevant, so we
frequently assume that n1 ≤ n2 ≤ · · · ≤ nd. Under this assumption, it is easy to
show that the minimum number of steps a Delannoy path can have is nd, while the
maximum is n1+ · · ·+nd, which corresponds to kmax−1 from earlier in this article.

Finally, we remark that, since each k-step Delannoy path begins and ends with
the points a0 = 0 and ak = n, we could equivalently represent a path a0 ≺
a1 ≺ · · · ≺ ak by the sequence b1,b2, · · · ,bk, where each bi = ai − ai−1. In this
representation, the bi are nonzero d-tuples of 0s and 1s. This observation is the
key to the following result.

Theorem 2. Fix n ∈ Nd such that n1 ≤ n2 ≤ · · · ≤ nd. Let kmax = n1+· · ·+nd+1.
Then, for each k (nd ≤ k ≤ kmax − 1), the number of k-step Delannoy paths in the
lattice L(n) is given by

|Dk(n)| =
(
k

nd

) k−nd∑
i=0

(−1)i
(
k − nd
i

) d−1∏
j=1

(
k − i
nj

)
.

Proof. Observe that each k-step Delannoy path a0 ≺ a1 ≺ · · · ≺ ak corresponds
uniquely to a sequence B = 〈b1,b2, · · · ,bk〉, where each bi = ai − ai−1. Each
bi is a nonzero d-tuple (bi1, bi2, . . . , bid)

T of 0s and 1s. By the definition of a
Delannoy path, projection of B onto the j-coordinate must give a sequence Bj =
〈b1j , b2j , . . . , bkj〉 of 0s and 1s that contains precisely nj ones, for each j (1 ≤ j ≤ d).

We count the number of such sequences B as follows. First, we choose the
sequence Bd = 〈b1d, b2d, . . . , bkd〉 of nd ones and k − nd zeros. There are

(
k
nd

)
choices for Bd. Next, we must choose sequences Bj for 1 ≤ j ≤ d− 1 in such a way
that each sequence has exactly nj ones, but we must also ensure that the resulting
sequence B has no zero terms. This amounts to ensuring that, for each zero term
in Bd, there is at least one Bj which is nonzero in that term. In other words, for
each i where bid = 0, there must be at least one j (1 ≤ j ≤ d−1) for which bij = 1.
This is achieved by the method of inclusion/exclusion, as follows.

Let Z = {i | bid = 0}, and for each T ⊆ Z, let s(T ) be the number of sequences
S = 〈s1, s2, · · · , sk〉, such that all of the conditions (i)-(iv) hold below.

(i) For each i (1 ≤ i ≤ k), the term si is a d-tuple (si1, si2, . . . , sid)T of 0s and
1s;

(ii) The d-projection of S satisfies Sd = Bd.
(iii) Each j-projection Sj = 〈s1j , s2j , . . . , skj〉 has precisely nj ones.
(iv) For each t ∈ T , the term st = 0.

To count s(T ), we note that condition (ii) fixes the d-projection of S. It remains
to satisfy (iii) by forming d − 1 independent sequences Sj , each with the specified
number nj of ones, and subject to the constraint (iv) that stj = 0 for t ∈ T . So for
each j, there are

(
k−t
nj

)
choices for such a sequence, where t = |T |. Taken together,

we arrive at the total s(T ) =
∏d−1
j=1

(
k−t
nj

)
.
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Now, since |T | can range from 0 to k−nd, the number of sequences B that have
the specified d-projection Bd and contain no zero terms is, by inclusion/exclusion,∑

T ⊆Z

(−1)|T |s(T ) =
k−nd∑
t=0

(−1)t
(
k − nd
t

) d−1∏
j=1

(
k − t
nj

)
.

Recalling the number of choices for Bd was
(
k
nd

)
, we obtain the result. �

3.2. The total number of Delannoy paths.

Theorem 3. Fix n ∈ Nd such that n1 ≤ n2 ≤ · · · ≤ nd and let k′max = n1 + · · ·+
nd−1 + 1. Then the total number of Delannoy paths in the lattice L(n) is given by

|D(n)| =
k′max∑
k=1

k∑
i=1

(−1)i+k
(
k − 1

i− 1

)(
nd + k − 1

nd

) d−1∏
j=1

(
nd + i− 1

nj

)
.

Proof. To find |D(n)|, we sum the expression for |Dk(n)| from Theorem 2 over all
k from nd to kmax − 1 to obtain:

|D(n)| =
kmax−1∑
k=nd

(
k

nd

) k−nd∑
i=0

(−1)i
(
k − nd
i

) d−1∏
j=1

(
k − i
nj

)
.

Reindexing the outer sum, this simplifies to

|D(n)| =
k′max∑
k=1

(
nd + k − 1

nd

) k−1∑
i=0

(−1)i
(
k − 1

i

) d−1∏
j=1

(
nd − 1 + k − i

nj

)
.

Replacing i by k − i reverses the order of the inner sum, and simplification gives
the desired result. �

Specializing to the central case, we have the following.

Theorem 4. [9] Fix n ∈ Nd such that ni = n for all i (1 ≤ i ≤ d). Then

C(n) = 2n+1D(n).

Proof. Immediate from Theorems 1 and 3. �

4. Generating Functions

For dimension d = 2, the total number of chains |C(n1, n2)| satisfies the recur-
rence

|C(n1, n2)| = 2 |C(n1 − 1, n2)|+ 2 |C(n1, n2 − 1)| − 2 |C(n1 − 1, n2 − 1)|
for n1, n2 ≥ 1, and |C(n1, n2)| = 2n1+n2 whenever n1n2 = 0.

Similarly, the total number of Delannoy paths |D(n1, n2)| satisfies the recurrence
|D(n1, n2)| = |D(n1 − 1, n2)|+ |D(n1, n2 − 1)|+ |D(n1 − 1, n2 − 1)|

for n1, n2 ≥ 1, and |D(n1, n2)| = 1 whenever n1n2 = 0.
Using these recurrences, the generating functions can be derived. Let gC2 (x, y)

and gD2 (x, y) be the generating functions for |C(n1, n2)| and |D(n1, n2)|, respec-
tively. So

gC2 (x, y) =
2

1− 2x+ 2y − 2xy
,
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and
gD2 (x, y) =

1

1− x− y − xy
.

Generalizing these results to higher dimensions requires some additional nota-
tion. For any positive integer d, let [d] denote the set {1, 2, . . . , d}. Also, let
Bd = {0, 1}d \ {0}. Recall the support of a ∈ Nd is supp(v) = { j ∈ [d] | aj 6= 0 }.
Observe that for v ∈ Bd we have that wt(v) = |supp(v)|, which is nonzero by the
definition of Bd.

Let n ∈ Nd with n = (n1, n2, . . . , nd). If T = { i1, i2, . . . , im } is a nonempty
subset of [d], then we define nT to be the vector of length d − m obtained by
removing the i1, i2, . . . , im components of n. When T = ∅ we set nT = n.

For arbitrary dimension d it is easily verified that for n ∈ Pd we have

|C(n)| =
∑
v∈Bd

2(−1)wt(v)+1 |C(n− v)| ,

and
|D(n)| =

∑
v∈Bd

|D(n− v)| .

Because these recurrences are similar in form, we treat them both as special cases
of a more general form to derive the generating functions uniformly. We begin with
the following definition.

Definition 2. Let a = 〈a0, a1, a2, . . .〉 be a sequence of real numbers. A sequence
of functions F = 〈F1, F2, F3, . . .〉, where Fd : Nd → R for all d ∈ P, is a-recurrent
if the following (i)-(iii) hold.

(i) For all d ∈ P and n ∈ Pd,

Fd(n) =
∑
v∈Bk

awt(v)Fd(n− v).

(ii) For all d ∈ P and nonzero n ∈ Nd \ Pd,
Fd(n) = Fd−|T |(nT ),

where T := [d] \ supp(n).
(iii) For all d ∈ P,

Fd(0) = a0.

It is not difficult to see that for a given sequence a = 〈a0, a1, a2, . . .〉, there is a
unique sequence of functions which is a-recurrent. To illustrate this definition, let
Fd(n) = |C(n)|, where n ∈ Nd. So the sequence of chain numbers is a-recurrent
with a = 〈2, 2,−2, 2,−2, 2, . . .〉, where the signs alternate after the first two entries.
Similarly, let Fd(n) = |D(n)|, where n ∈ Nd. So the sequence of Delannoy numbers
is a-recurrent with a = 〈1, 1, 1, . . .〉.

Theorem 5. Let F = 〈F1, F2, F3, . . .〉 be an a-recurrent sequence of functions with
a = 〈a0, a1, a2, . . .〉. For d ∈ P, let gd(x) = gd(x1, x2, . . . , xd) be the generating
function for Fd. Then

gd(x) = a0

1−
∑

∅6=S⊆[d]

a|S|
∏
i∈S

xi

−1 .
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Proof. We proceed by induction on d. If d = 1, then F1(n) = a1F1(n−1) for n ∈ P
by Def. 2(i) and F1(0) = a0 by Def. 2(iii). So

∞∑
n=1

F1(n)x
n =

∞∑
n=1

a1F1(n− 1)xn.

Thus g1(x)− a0 = xa1g1(x) giving that g1(x) = a0(1− a1x)−1, as desired.
Now fix an integer d ≥ 2 and suppose that the statement holds for all j ∈ [d−1].

Using the fact that our sequence of functions is a-recurrent, we have that

(7)
∑
n∈Pd

Fd(n)x
n1
1 xn2

2 · · ·x
nd

d =
∑
n∈Pd

∑
v∈Bd

awt(v)Fd(n− v)xn1
1 xn2

2 · · ·x
nd

d .

Consider the left-hand side of (7). By inclusion-exclusion and the definition of
a-recurrent, we have

(8)
∑
n∈Pd

Fd(n)x
n1
1 xn2

2 · · ·x
nd

d = (−1)da0 +
∑
S([d]

(−1)|S|gd−|S|(xS).

Now consider the right-hand side of (7). Let v ∈ Bd and let Sv := supp(v) =
{ i1, i2, . . . , iwt(v) }. Note that wt(v) ≥ 1. Again by inclusion-exclusion, for this
particular v, we have

(9)
∑
n∈Pd

awt(v)Fd(n− v)xn1
1 xn2

2 · · ·x
nd

d =

awt(v)xi1xi2 · · ·xiwt(v)

∑
T⊆[d]\Sv

(−1)|T |gd−|T |(xT )

By (7), the expression on the right side of (8) must equal the sum over all v ∈ Bd
of the expression on the right side of (9), giving

(10) (−1)da0 +
∑
S([d]

(−1)|S|gd−|S|(xS) =∑
v∈Bd

awt(v)xi1xi2 · · ·xiwt(v)

∑
T⊆[d]\Sv

(−1)|T |gd−|T |(xT )

Each v ∈ Bd corresponds to a unique nonempty subset V ⊆ [d] and conversely, so
(10) can be rewritten as
(11)
(−1)da0 +

∑
S([d]

(−1)|S|gd−|S|(xS) =
∑

∅6=V⊆[d]

a|V |
∏
i∈V

xi
∑

T⊆[d]\V

(−1)|T |gd−|T |(xT ).

Swapping the order of summation on the right yields
(12)
(−1)da0 +

∑
S([d]

(−1)|S|gd−|S|(xS) =
∑
T([d]

(−1)|T |gd−|T |(xT )
∑

∅6=V⊆[d]\T

a|V |
∏
i∈V

xi.
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Collecting all instances of gd(x) on the left side, we obtain

(13) gd(x)

1−
∑

∅6=V⊆[d]

a|V |
∏
i∈V

xi

 = (−1)d+1a0

−
∑

∅6=S([d]

(−1)|S|gd−|S|(xS)

+
∑

∅6=T([d]

(−1)|T |gd−|T |(xT )
∑

∅6=V⊆[d]\T

a|V |
∏
i∈V

xi.

It remains to show that the right side equals a0. To this end, observe that the two
sums on the right can be combined. Doing so reduces the right side of the above to

(−1)d+1a0 −
∑

∅6=S([d]

(−1)|S|gd−|S|(xS)

1−
∑

∅6=V⊆[d]\S

a|V |
∏
i∈V

xi

 .

By the induction hypothesis,

gd−|S|(xS) = a0

1−
∑

∅6=V⊆[d]\S

a|V |
∏
i∈V

xi

−1 .
Therefore, substitution into (13) gives us

gd(x)

1−
∑

∅6=V⊆[d]

a|V |
∏
i∈V

xi

 = (−1)d+1a0 −
∑

∅6=S([d]

(−1)|S|a0.(14)

= a0

[
(−1)d+1 −

d−1∑
i=1

(
d

i

)
(−1)i

]
.(15)

The bracketed expression equals 1, by a well-known identity [1, Th. 1.7], and the
result now follows. �

Corollary 4. Let gD3 (x, y, z) be the generating function for the 3-dimensional De-
lannoy numbers. Then

gD3 (x, y, z) =
1

1− x− y − z − xy − xz − yz − xyz
.

Corollary 5. Let gC3 (x, y, z) be the generating function for the 3-dimensional chain
numbers. Then

gC3 (x, y, z) =
2

1− 2(x+ y + z − xy − xz − yz + xyz)
.
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